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Abstract

In this paper, based on the available mathematical works on geometry and topology of hyperbolic
manifolds and discrete groups, some results of Friedman et al. (Nuclear Phys. B 456 (1999) 96–118)
are reproduced and broadly generalized. Among many new results, the possibility of extension of
work of Belavin, Polyakov and Zamolodchikov to higher dimensions is investigated. Objections
known in the physical literature against such an extension are removed and the possibility of an
extension is convincingly demonstrated. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, there had been attempts to extend the results of two-dimensional conformal field
theories (CFTs) to higher dimensions [1,2]. Since publication of papers by Witten [3,4],
it had become clear that there is a very close correspondence between two-dimensional
physics of critical phenomena and three-dimensional physics of knots and links. A very
detailed study of this correspondence is developed by More and Seiberg [5]. Additional
more recent contributions were made in [6], etc. All these works heavily exploit the algebraic
aspects of this correspondence through the use of Yang–Baxter equations, quantum groups,
etc. Less effort has been spent on the development of the same correspondence from the
topological point of view through the study of 3-manifolds complementary to knots (links)
in S3 = R3 ∪ {∞}. Such a study is potentially more beneficial since it is known [7]
that in four dimensions all knots are trivial (i.e. unknotted) so that the algebraic methods
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used so far are necessarily limited to three dimensions and, accordingly, to the study of
two-dimensional CFTs only. At the same time, the topological study of manifolds is not
limited to three dimensions. The reason why such studies are useful could be understood
from the following simple arguments taken from the book by Maskit [8].

Define an inclusion ofRd intoRd+1 throughRd = {(x, t)|t = 0}, wherex ∈ Rd, −∞ ≤
t ≤ ∞. The upper half-space Poincaré model of hyperbolic spaceHd+1 is defined by

Hd+1 = {(x, t)|t > 0} (1.1)

with x ∈ Rd so that∂Hd+1 = Rd . Consider a special groupG of motions ofRd+1 = {x, t}
made of
1. Translations:(x, t) → (x + a, t), a ∈ Rd ;
2. Rotations:(x, t) → (r(x), t), r ∈ O(d);
3. Dilatations:x → λx, λ > 0, λ 6= 1; and
4. Inversions:x → x/|x|2.

It can be proven [8] that the groupG acts as a group ofisometriesof Hd+1 and is called
d-dimensional Möbius group. In its action onRd “G acts as a group of conformal motions
butnotas a group of isometries inanymetric”.

At the same time, it is well established [9] that inany dimensionthe physical system
at criticality possesses the invariance which is described in terms of the groupG. Hence,
the very existence of criticality is closely associated with the hyperbolicity of the adjacent
space.

Let x ∈ Hd+1 andγ ∈ G. Consider a motion (an orbit) inHd+1 by successive applica-
tions ofγ to x. It is of interest to study if such a motion will ever hit∂Hd+1 = Rd . This
problem is highly nontrivial and was solved by Beardon and Maskit [10] (e.g. see Section 5
for more details) ford = 2. The nontriviality of this problem could be better understood if,
instead of the upper half-spaceHd+1model, we would consider the unit ballBd+1 model
of hyperbolic space with the unit sphereSd∞ (sphere at infinity) playing the same role in this
model as∂Hd+1 = Rd in the upper half-space model. Since not all subgroups ofG will
allow hitting of the boundary, it is clear that one should be interested only in those subgroups
whose orbits end up at the boundary. These subgroups, in turn, could be further subdivided
into those whose limit points onSd∞ will cover the entire sphere and those which will cover
only a part ofSd∞. This part we shall denote as3. The limit set3 is actually a fractal. The
fractal dimension of3 is directly related to the critical indices of the two-point correlation
functions of the corresponding conformal models at criticality. Different subgroups of the
Möbius groupG will produce different fractal dimensions. In turn, the corresponding hy-
perbolic manifolds associated with these groups could be viewed as complements of the
related knots (links) in the case of 2+1 dimensions so that different conformal models,
indeed, could be associated with different types of knots (links). This association becomes
unnecessary when one is interested in conformal models in dimensions three and higher.
One could still consider motions associated with subgroups of the Möbius group and the
corresponding, say, hyperbolic 4-manifolds without using knots, braids, the Yang–Baxter
equations, etc.
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Although stated in a different form, recent results of Maldacena [11] and their subsequent
refinement in [12–16] (and many additional references therein and elsewhere which we do
not include) are actually directly connected with ideas just described. In the physics litera-
ture the connection between “surface” and “bulk” field theories is known as theholographic
principle (holographic hypothesis) [17,18]. In simple terms [19], it can be formulated as a
statement that “a macroscopic region of space and everything inside it can be represented by
a boundary theory living on the boundary region”. Mathematical support of this principle
in the physics literature is attributed to papers by Fefferman and Graham [20] and Graham
and Lee [21]. These papers discuss boundary conditions at infinity for Einstein manifolds
(spaces) and initial value problem for Einstein’s equations. Although our previous discus-
sion did not involve the Einstein manifolds, actually, the results of Graham and Lee [21] are
consistent with those which follow from hyperbolic geometry. This can be understood if
one takes into account that Einstein spaces are characterized by the property that the Ricci
tensorRij is proportional to the metric tensorgij [22], i.e.

Rij = λgij . (1.2)

Since the scalar curvatureR = gijRij , the above equation can be rewritten as

Rij = R

d
gij , (1.3)

whered is the dimensionality of space (as before). The Einstein tensor

Gi
j = Ri

j − 1
2δi

jR (1.4)

acquires a particularly simple form with help of Eq. (1.3):

Gi
j =

(
1

d
− 1

2

)
δi
jR (1.5)

and, becauseGi
j,h = 0, we obtain(

1

d
− 1

2

)
R,j = 0. (1.6)

This implies that the scalar curvatureR is constant. For isotropic homogenous spacesEd ,
the Riemann curvature tensor is known to be [23] given by

Rijkl = k(x)(gikgjl − gilgjk), (1.7)

so that the Ricci tensor is given by

Rij = (d − 1)k(x)gij , (1.8)

wherek(x) is the sectional curvature at the pointx ∈ Ed . Schur’s theorem [23] guarantees
that k(x) = k = const ford ≥ 3. Comparison between Eqs. (1.2) and (1.8) produces
thenλ = (d − 1)k and, accordingly,R = d(d − 1)k. The spatial coordinates can always
be rescaled so that, fork < 0, we obtain, the canonical valuek = −1 characteristic of
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hyperbolic space [24,25]. Since in the work by Graham and Lee [21], the condition given
by Eq. (1.8) is used (withk = −1), the connections with hyperbolic geometry is evident.
Since Eq. (1.5) can be equivalently rewritten with help of Eq. (1.8) as

Rij − 1
2gijR + 3̂gij = 0 (1.9)

with the cosmological term̂3 = −1
2(d − 1)(d − 2), the equation thus obtained pro-

duces a metric for Einstein space known in the literature as the anti-de Sitter (AdS) space
[26]. Hence, in part, the purpose of this work is to investigate in some detail connections
between the results obtained in the physics literature and related to the CFT–AdS correspon-
dence, e.g. see [12], and those known in mathematics and related to hyperbolic geometry
and hyperbolic spaces. Not only it is possible to reobtain results known in physics us-
ing these connections, but many more follow along the way of physical reinterpretation
of known results in mathematics. Establishing these connections touches many aspects of
modern mathematics such as the geometry and topology of hyperbolic manifolds [25],
multi-dimensional extension of the theory of Teichmüller spaces [27], spectral analysis of
hyperbolic manifolds [28] (including those with cusps [29]), random walks on group man-
ifolds [30,31], theory of deformations of Kleinian and Fuchsian groups [32] (and Möbius
groups in general), ergodic theory of discrete groups [33], Kodaira–Spencer theory of de-
formations of complex manifolds [34], loop groups [35], cohomology of groups, etc. In
particular, the cohomological aspects of these connections lead directly to the Virasoro al-
gebra and its generalizations thus allowing us to discuss the extension of fundamental results
of Belavin–Polyakov–Zamolodchikov (BPZ) [36] to higher dimensions (e.g. see Section
8). To make our presentation self-contained, we had incorporated some auxiliary results
from mathematics into the text which are meant only to facilitate reader’s understanding
without detracting his/her attention fromphysicalgoals and motivations of this work. A
quick summary of some auxiliary mathematical results related to hyperbolic 3-manifolds
and Einstein spaces also could be found in our papers [37,38].

This paper is organized as follows. In Section 2, we discuss an auxiliary Plateau problem
in (d + 1)-dimensional Euclidean space. Already in two dimensions the full analysis of the
Plateau problem is quite nontrivial as it was demonstrated in the classical work of Douglas
[39] published in 1939. Multi-dimensional treatment of this problem is even less trivial and
touches many subtle aspects of the harmonic analysis [40]. Nevertheless, the extension of
the Euclidean variant of the Plateau problem to the hyperbolicHd+1 space is actually not
difficult and was accomplished rather long time ago by Ahlfors [25]. Using the results of
Ahlfors, we were able to reobtain the results of Friedman et al. [12] almost straightforwardly
in Section 3. We deliberately consider only the scalar field case in this work since the
extension of our treatment to vector and tensor fields (to be briefly considered in Section 8)
does not cause much additionalconceptualproblems. To generalize the results of Section 3
and to put them into an appropriate mathematical context, we discuss (in Section 4) diffusion
in the hyperbolic space. This is done with several purposes. First, using symmetries of the
Laplace operator acting in hyperbolic space it is possible to subdivide Brownian motions
on transient and recurrent. Only transient motions can reach the boundary of hyperbolic
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space. The transience and/or recurrence is associated with convergence or divergence of
certain infinite sums known as Poincaré series. The convergence or divergence of such series
is being controlled by the critical exponentα. Patterson [41], Sullivan [42], Ahlfors [25],
Thurston [43] and others [33] had shown that this exponent is associated with the fractal
dimension of the limit set3. Stated in physical terms, it is shown in Section 5 that this
exponent is associated with the exponent 2ν for the two-point correlation function of the
corresponding boundary CFT. The exponentα depends upon the specific group of motions
in Hd+1. This group is directly associated with the group of symmetries of the hyperbolic
manifold so thatdifferent groupsassociated withdifferent manifoldswill producedifferent
α’s. Being armed with these ideas it is possible to improve the existing physical results
using spectral theory of hyperbolic manifolds in Section 6. In this section it is shown
that the obtained eigenvalue spectrum of the hyperbolic Laplacian discussed in physics
literature is incomplete and much more results could be obtained with help of the existing
mathematical literature, e.g. see [28]. For instance, two-dimensional critical exponent 2ν for
the Ising model is almost straightforwardly obtained with the help of the recently obtained
results of Bishop and Jones [44]. With this result obtained, it is only natural to look for
connections between the boundary CFT results and those coming from the fundamental
work of BPZ [36]. The connection can be established rather easily, e.g. see Section 7, based
on the theory of deformation of Kleinian groups [27,32] which is closely associated with
the theory of Teichmüller spaces [45] as it was demonstrated by Bers [46] some time ago.
One of the sources which generates “new” Kleinian groups from the “old” ones is through
the extension of the quasiconformal deformations produced at the boundary� = S2∞ − 3

of hyperbolic space into the bulk (i.e. holography in physical terminology). The theory of
such deformations was under development in mathematics for quite some time. However,
the results which are essential for making connections with current physics literature had
been obtained by mathematicians only quite recently. In particular, Canary and Taylor [47]
had demonstrated that the limit set of Kleinian groups which produce critical exponentsα in
physically interesting range (e.g. for 0< α < 1, one obtains the correct Ising model critical
exponent 2ν = 1

4, etc.) is a circleS, perhaps, with some points (or, may be, segments) being
removed (e.g. see Section 7 for more details). These facts naturally explain the crucial role
being played by the loop groups and the loop algebras [35] in the CFTs and other exactly
integrable systems [48]. At the same time, Nag and Verjovsky [49] had demonstrated how
the boundary deformations of such circle is connected with the central extension term of
the Virasoro algebra thus providingmajor physical reasonsfor existence of such term.
Moreover, the analysis of the seminal work by Nag and Verjovsky indicates that, actually,
their main results are based entirely on much earlier work by Ahlfors [50]. The Virasoro
algebra and all results of the CFT [36] could be obtained much earlier should work by Ahlfors
[50],written in 1961, be properly interpreted at that time. Ahlfors and many others (e.g. see
[27] for a review) had developed extension of the theory of two-dimensional quasiconformal
deformations to hyperbolic spaces of higher dimensions. When these results are being put in
a proper physical context they allow extension of the BPZ formalism to higher dimensions.
The possibility of such extension(s) is discussed in Section 8. Taking into account that the
conformal group ind dimensions is isomorphic to the Lie groupO(d + 1, 1) as noticed by



198 A.L. Kholodenko / Journal of Geometry and Physics 35 (2000) 193–238

Cartan in 1920s [51], ford = 2 we obtain the Lie groupO(3, 1) known also as Lorentz
group. The connected part of this group is isomorphic to PSL(2, C) [52]. The Lie algebra
of this group, VectS1, upon central extension produces the Virasoro algebra. Ford = 3 we
have the Lie groupO(4, 1) known as de Sitter group. The representations of the Lie algebra
for this group, fortunately, were studied both in mathematics [53–55] and in physics [56,57]
in connection with exact algebraic solution of the hydrogen atom. Since the hydrogen atom
is an exactly solvable quantum mechanical problem, construction of representations of the
Lie algebra for the de Sitter Lie group is also known. It is facilitated by the major observation
[53–55] that the Lie algebra of the de Sitter group can be presented as direct tensor product
of the Lie algebras for the groupSO(3) ' PSL(2, C). Hence, it is possible to construct the
central extensions foreachof the Lie algebrasso(3) independentlythus forming two copies
of the Virasoro algebras withdifferentcentral charges in general. Construction of the tensor
products of the Virasoro algebras had been discussed in literature already (e.g. see Lecture
12 of [58]). This possibility is worth discussing only if the limit set3 is theunionof two
independent circles. Since this fact had not been proven, to our knowledge, other possibilities
also exist, e.g.3 is still a circle. These possibilities are discussed briefly in the same section.
Recently, Bakalov et al. [59] were able to extend the cohomological analysis of Gelfand
and Fuks [60] thus obtaining the higher-dimensional analog of the Virasoro conformal
algebra (e.g. see Section 10 of [59]). It remains as a challenging problem to recover these
results by developing the Kodaira–Spencer-like cohomological theory of multi-dimensional
quasiconformal deformations. Some sketch of efforts in this direction is provided in the same
section.

2. The Plateau problem in(d + 1)(d + 1)(d + 1)-dimensional Euclidean space

The classical Plateau problem, when stated mathematically, essentially coincides with
the Dirichlet problem. In two dimensions the Dirichlet problem can be formulated as fol-
lows: among functionsϕ(z), z ∈ A (whereA is some closed domain of the complex
planeC) which take valuesϕ0(z) at ∂A such that the Dirichlet integralD[ϕ] defined
by

D[ϕ] =
∫ ∫

A

d2z(∇∇∇ϕ · ∇∇∇ϕ) (2.1)

has the lowest possible value. Evidently, the above problem can be reduced to the prob-
lem of finding the harmonic functionϕ(z), i.e. the function which obeys the Laplace
equation

1ϕ = 0 if z ∈ A but z /∈ Ā (2.2)

and takes at the boundary∂A the preassigned values

ϕ|∂A = ϕ0(z). (2.3)
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If G(z, z′) is the Green’s function of the Laplace operator1, then the harmonic function
which possess the above properties is given by the following boundary integral:

ϕ(z) = −
∫

∂A

dσ ϕ0(σ )
∂G

∂n
(2.4)

with normal derivative taken with respect to the direction of the exterior normal. Use of
Green’s formulas allows one to rewrite the Dirichlet integral in the following equivalent
form:

D[ϕ] =
∫ ∫

A

d2z(∇∇∇ϕ · ∇∇∇ϕ) =
∫

∂A

dσ ϕ0(σ )
∂ϕ

∂n
|z=σ . (2.5)

By combining Eqs. (2.4) and (2.5) we obtain

D[ϕ] = −
∫

∂A

dσ ϕ0(σ )

∫
∂A

dσ ′ ϕ0(σ
′)

∂2G

∂n∂n′ . (2.6)

Taking into account that∫
∂A

dσ
∂G

∂n
= 1, (2.7)

which implies

∂

∂n′

∫
∂A

dσ
∂G

∂n
= 0. (2.8)

We can rewrite Eq. (2.6) in the following equivalent form:

D[ϕ] = 1

2

∫
dσ

∫
dσ ′[ϕ0(σ ) − ϕ0(σ

′)]2
∂2G

∂n∂n′ . (2.9)

Eq. (2.9) was derived by Douglas [39] in 1939 in connection with his extensive study
of the Plateau problem and serves as starting point of all further investigations related to
two-dimensional Plateau problem.

In the case if∂A is an extended (long enough) contour, following Douglas, we can use
the Green’s function for the half-space given by

G(z, z′) = − 1

4π
ln

(x − x′)2 + (y − y′)2

(x − x′)2 + (y + y′)2
(2.10)

with z = x + iy, y > 0. To get∂2G/∂n∂n′, we have to keep only the infinitesimal values
of y andy′ in Eq. (2.10). This then produces

G(z, z′) ≈ − 1

π

yy′

(x − x′)2
, (2.11)

so that

∂2G

∂n∂n′ = 1

π

1

(x − x′)2
. (2.12)
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Using this result in Eq. (2.9), we obtain

D[ϕ] = 1

2π

∫
dσ

∫
dσ ′[ϕ0(σ ) − ϕ0(σ

′)]2
1

(σ − σ ′)2
. (2.13)

This result is manifestly nonsingular for the well-behaved functionϕ0(σ ). The requirements
on ϕ0(σ ) needed forD[ϕ] to be nondivergent could be found in the already cited paper
by Douglas [39]. In anticipation of physical applications, obtained results can be easily
extended now to higher dimensions. To do so, the metric of the underlying space should be
specified. Below we develop our results for the case of Euclidean spaces of dimensiond+1,
while in Section 3 we shall extend these results to the case of hyperbolic (Lobachevski)
spaceHd+1. In the case ofd+1 Euclidean space it is sufficient [40] to consider the Dirichlet
problem for the half-space:{x, z|z > 0} so that dd+1x = ddx dz andϕ(x) = ϕ(x, z) with
ϕ0(x) ≡ ϕ(x, 0) or, equivalently, in the unit(d + 1)-dimensional ballBd+1. An analog of
the Poisson formula, Eq. (2.4), is known [40] to be

ϕ(x, z) =
∫

∂A

ddx PE(z, x − x′)ϕ0(x) (2.14)

with

PE(z, x − x′) = cd+1
z

[(x − x′)2 + z2](d+1)/2
, (2.15)

wherecd+1 = 2/((d + 1)V (B)) with

V (B) =




π(d+1)/2

[(d + 1)/2]!
if d + 1 is even,

2(d+2)/2πd/2

1 · 3 · 3 · · · (d + 1)
if d + 1 is odd.

(2.16)

For example, ifd + 1 = 2 we obtainc2 = 1/π . This result is in accord with Eq. (2.11)
since using this equation and prescription of Douglas [39], we obtain

PE(z, x − x′) = ∂

∂n
G = 1

π

z

z2 + (x − x′)2
. (2.17)

By repeating the same steps as in the two-dimensional case, we obtain now the following
value for the Dirichlet integral:

D[ϕ] = cd+1

2

∫
∂A

ddx

∫
∂A

ddx′[ϕ0(x) − ϕ0(x′)]2
1

|x − x′|d+1
. (2.18)

This result coincides with that earlier obtained, Eq. (2.13), for the case of two dimensions
as required. Evidently, it could be made nonsingular if the boundary functionϕ0(x) is
appropriately chosen. Eq. (2.18) differs from that known in physical literature, e.g. see [61],
where, instead, the following value for the Dirichlet integral was obtained:

D[ϕ] = ad

∫
∂A

ddx

∫
∂A

ddx′ ϕ0(x)ϕ0(x′)
|x − x′|d+1

(2.19)
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with constantad left unspecified. Such integral could be potentially divergent, unlike that
given by Eq. (2.18), and, therefore, provides no acceptable solution to the Dirichlet (or
Plateau) problem in any dimension. Obtained results can be easily generalized to the case
of hyperbolic space. This generalization is being treated in Section 3.

3. The Plateau problem in(d + 1)(d + 1)(d + 1)-dimensional hyperbolic space

Since the Euclidean variant of the AdS space is just usual hyperbolic spaceHd+1, as
was noticed in [13], we shall treat only the hyperbolic Dirichlet (Plateau) problem in this
paper. This is justified by the fact that all results obtained in this work are in agreement with
those obtained in physics literature with the help of less mathematically rigorous methods.
Such an agreement is not totally coincidental. It follows actually from deep results obtained
by Scannell [62], which provide a unified description of hyperbolic, de Sitter and AdS
spaces.

As it was shown by Ahlfors [25], the Green’s formulas of harmonic analysis survive
transfer to the hyperbolic space with minor modifications. For example, for arbitrary (but
well behaved) functionsu andv the Green’s formula analog for the hyperbolic space is
given by∫

V

u1hv dhx =
∫

∂V

u
∂v

∂nh
· dσh −

∫
V

(∇∇∇hu · ∇∇∇hv) dxh. (3.1)

In particular, ifu = v andu is hyperharmonic, i.e.

1hu = 0 inV (3.2)

then

D[u] =
∫

V

dxh(∇∇∇hu · ∇∇∇hu) =
∫

∂V

u
∂u

∂nh
· dσh, (3.3)

which is the hyperbolic analog of Eq. (2.5). The subscript h in all the above equations stands
for “hyperbolic”. In particular, in the case ofBd+1 ((d +1)-dimensional ball of unit radius)
model of hyperbolic space, we have for the hyperbolic Laplacian the following result

1hf (r) = 1
4(1 − r2)2

[
1f + 2(d − 1)

1 − r2
r
∂f

∂r

]
(3.4)

with r = |x|, (|x| = (
∑d+1

i=1 x2
i )1/2) and

1f (r) = d2

dr2
f + d

r

df

dr
, (3.5)

while in the case of the upper half-space realization of hyperbolic space we have as well

1hf (x,z) = z2
[
1f − (d − 1)

1

z

∂f

∂z

]
, z > 0. (3.6)
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It can be easily shown [33] that for the upper half-space model, the following eigenfunction
equation holds:

1hz
α = α(α − d)zα, (3.7)

so that the functionzd is hyperharmonic since it obeys the hyperharmonic generalization
of the Laplace equation (2.2):

1hz
d = 0. (3.8)

In the case ofBd+1 model, we have as well [25]

dxh = 2d+1 dx1 dx2 · · · dxd+1

(1 − |x|2)d+1
, (3.9)

dσh = 2d dx1 dx2 · · · dxd

(1 − |x|2)d , (3.10)

∂u

∂nh
= 1 − |x|2

2

∂u

∂n
, (3.11)

∇∇∇hu = 1
2(1 − |x|2)∇∇∇u. (3.12)

The analogous formulas could be obtained for theHd+1 model as well. The hyperbolic
Laplacian1h possesses very important property of Möbius invariance which can be for-
mulated as follows. Letγ x = x′ be the Möbius transformation of hyperbolic space, i.e. let
γ ∈ 0, where0 is the group of isometries which leaveHd+1 (or Bd+1) invariant, then for
any functionf , such that

1hf (x) = F(x), (3.13a)

we have as well

1hf (γ x) = F(γ x). (3.13b)

In particular, if the functionf (x) is hyperharmonic, then the functionf (γ x) is also hyper-
harmonic. We have already mentioned, e.g. Eq. (3.7) that the functionzd is hyperharmonic.
Now, we would like to use the property of the hyperharmonic Laplacian given by Eq. (3.13b)
in order to obtain the more general form of the hyperharmonic function inHd+1. Using
known results for the Möbius transformations inHd+1, one easily obtains (with an accuracy
up to an unimportant constant)

f (x) =
[

z

|z2 + (x − x′)2|2
]d

. (3.14)

Let us check this result for the case of two dimensions first. In this cased = 1 in Eq. (3.14)
and we obtain (with accuracy up to constant) Eq. (2.17). This fact is not totally coincidental
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since, in view of Eq. (3.6), the hyperbolic Laplacian coincides with the usual one ford = 1.
Therefore, we can write as well ind + 1 dimensions:

PH(z, x − x′) = ĉd

[
z

|z2 + (x − x′)2|2
]d

(3.15)

to be compared with Eq. (2.15). To calculate the constantĉd we have to use known general
properties of the Poisson kernels [40]. In particular, the normalization requirement

ĉd

∫
ddx

[
z

|z2 + x2|2
]d

= 1 (3.16)

makesPH to act as probability density. This fact is going to be exploited below.
Using spherical system of coordinates, we easily obtain

ĉ−1
d = ωd

∫ ∞

0
dx

xd−1

(x2 + 1)d
= ωd

2

0(d/2)0(d/2)

0(d)
, (3.17)

whereωd is the surface area ofd-dimensional unit sphere,

ωd = 2πd/2

0(d/2)
. (3.18)

By combining this result with Eq. (3.17), we obtain

ĉd = 0(d)

πd/20(d/2)
. (3.19)

Given the results above, to obtain the Dirichlet integral using Eq. (3.3) is rather straightfor-
ward, especially by working inHd+1 space. In this case, we have to replace Eqs. (3.9)–(3.12)
by the following equivalent expressions:

dσh = ddx

xd
0

, (3.20)

∂u

∂nh
= x0

∂u

∂x0
, (3.21)

while keeping in mind Eq. (3.16). With these remarks we obtain at once

D[ϕ] = −dĉd

∫
ddx

∫
ddx′ ϕ0(x)ϕ0(x′)

|x − x′|2d
. (3.22)

This result coincides with that obtained by Friedman et al. [12] and, later, in [15]. In both
cases the methods which were used are noticeably different from ours.

Based on the discussion presented in Section 2, it is clear that this result can be rewritten
in a manifestly nonsingular way thus removing the need for renormalization advocated in
[14]. Actually, there is much more to it as we shall demonstrate shortly below.
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4. Diffusion in the hyperbolic space and boundary CFT

The connection between the Klein–Gordon (K–G) and the Schrödinger propagators had
been discussed already by Feynman long time ago and had been exploited recently in our
work [63]. For reader’s convenience, we would like to repeat here these simple arguments.
To this purpose, let us consider the equation for K–G propagator in Euclidean space first.
We have

(1 − m2)G(x, x′) = δd(x − x′). (4.1)

By introducing the fictitious (or real) time variablet , the auxiliary equation

∂

∂t
Ĝ(x, x′; t) = (1 − m2)Ĝ(x, x′; t) (4.2)

supplemented with the initial condition

Ĝ(x, x′; t = 0) = δd(x − x′) (4.3)

is useful to consider in connection with Eq. (4.1). The correctness of such imposed initial
condition could be easily checked. Indeed, since the solution of Eq. (4.2) is known to be

Ĝ(x, x′; t) =
∫

ddk

(2π)d
exp{−ik · (x − x′) − t (k2 + m2)}, (4.4)

one obtains immediately the result given by Eq. (4.3). At the same time, if the solution of
Eq. (4.2) is known, then the solution of Eq. (4.1) is known as well and is given simply by

G(x, x′) =
∫ ∞

0
dt Ĝ(x, x′; t). (4.5)

One can do even better by noticing that the mass term in Eq. (4.2) can be simply eliminated
by using the following substitution:

Ĝ(x, x′; t) = e−m2t G̃(x, x′; t). (4.6)

Thus the introduced functioñG obeys the standard diffusion equation

∂

∂t
G̃(x, x′; t) = 1G̃(x, x′; t), (4.7)

which is just the Euclidean version of the Schrödinger equation for the free particle prop-
agator. From the theory of random walks, it is well known [64] that in the case ofm2 = 0
andx = x′ the quantity

G(0) =
∫ ∞

0
dt Ĝ(0; t) (4.8)

represents the average time〈T 〉 which the Brownian particle spends at the origin (initial
point). The probability5(0) of returning to the origin is known to be related toG(0) as
follows [64]

5(0) = 1 − 1

G(0)
. (4.9)
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Accordingly, the random walk isrecurrentor transientdepending upon5(0) being equal
to or lesser than 1. The “recurrent” means that the “particle” will come to the origin time
and again, while the “transient” means that withfinite probability, it will leave the origin
and may never come back.

Thus, from the point of view of the theory of Brownian motion, the Dirichlet problem
discussed in Sections 2 and 3 is associated with the question about the probability for the
random walker to reach the boundarySd∞ (in the case ofBd+1 model) orRd (in the case
of Hd+1 model) of hyperbolic space or, alternatively, the random walk must betransient
in order to be able to reach the boundary. This can be formulated also as the condition

G(0) < ∞ (4.10)

for the Dirichlet problem to be well posed. This condition may or may not be fulfilled as
we shall discuss shortly. In the meantime, we would like to return to the massive case in
order to extend to this case the above described concepts. Using Eq. (3.7), we obtain now
for the massive case, the following requirement

α(α − d) − m2 = 0 (4.11)

for the functionzα to remain hyperharmonic. Eq. (4.11) leads to the following values ofα:

α1,2 = 1
2d ± 1

2(d2 + m2)1/2. (4.12)

To determine which of the values ofα are acceptable, it is sufficient only to check the
normalization condition analogous to that used in Eq. (3.16). To this purpose the Poisson-like
formula (e.g. see Eq. (2.14)) is helpful. In the present case we have

ϕ(x, z) = ĉα

∫
Rd

ddx

[
z

(x − x′)2 + z2

]α

ϕ0(x
′). (4.13)

If α = d, then it is easy to see that forϕ0(x) = const the r.h.s. of Eq. (4.13) isz-independent.
If α 6= d, then after rescaling:x → x/z ≡ y, we are left with the factorzd−α under the
integral. This factor can be eliminated if we require

zd−αϕ0(yz) = ϕ0(y). (4.14)

This provides the boundary fieldϕ0 with the scaling dimension10 = d − α in complete
accord with [12], where this result was obtained by use of slightly different set of arguments.

Now we are in the position to determine the actual value of the constantĉα. By analogy
with Eq. (3.17), we obtain

ĉ−1
α = ωd

∫ ∞

0
dx

xd−1

(x2 + 1)α
= ωd

2

0(α − (d/2))0(d/2)

0(α)

or, alternatively,

ĉα = 0(α)

πd/20(α − (d/2))
. (4.15)
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Forα = 1
2d the above equation becomes singular. This observation leaves us with an option

of choosing “+” sign in Eq. (4.12). This option is not the only one as it will be demonstrated
below. In addition, the massm2 should be larger than−1

4d2 for the sake of the normalization
requirement. These conclusions coincide with the results of Sullivan [42] who reached them
by using a somewhat different set of arguments. Using Eq. (4.13) and repeating the same
steps as in the massless case, e.g. see Eqs. (3.20)–(3.22), we obtain for the Dirichlet integral
the following final result:

D[ϕ] = −ĉα+

∫
ddx

∫
ddx′ ϕ0(x)ϕ0(x′)

|x − x′|2α+
. (4.16)

Eq. (4.16) is in formal agreement with the results obtained in [12,15]. Unlike [12,15], where
no further analysis of these results was made, we would like to examine the obtained results
in more detail. As we had mentioned already in Section 1, according to Maskit [8], the group
of Möbius transformations acts as a group of isometries in the hyperbolic spaceHd+1 (or
Bd+1) but not at its boundary. At the boundary of the hyperbolic space it acts only as a
group of conformal “motions” (transformations), which is “not a group of isometries in
any metric” [8]. If we take into account that the isometric motions in the hyperbolic space
are described by a group0 of Möbius transformations, then Eqs. (4.5) and (4.6) should be
modified. In particular, we should write, instead of Eq. (4.5), the following result:

G(x, x′) =
∑
γ∈0

∫ ∞

0
dt e−m2t G̃(x, γ x′; t). (4.17)

The integral in Eq. (4.17) can be estimated, e.g. see the discussion presented in Sections 5
and 6, and is roughly given by∫ ∞

0
dt e−m2t G̃(x, γ x′; t) . c exp{−α+ρ(x, γ x′)}, (4.18)

whereρ(x, x′) is the hyperbolic distance betweenx andx′ andc is some constant. It can
be shown [33,42] that the convergence or divergence of the Poincaré series

gα+(x, x′) =
∑
γ∈0

exp{−α+ρ(x, γ x′)} (4.19)

is actually independent ofx andx′. Hence, one can choose as well bothx andx′ at the
center of the hyperbolic ballBd+1. Then, if the Poincaré series isdivergent, we have
the recurrence (or ergodicity [32,42]) according to Eq. (4.9), and if it is convergent, we
have the transience. In this case the random walk which had originated somewhere inside
the hyperbolic space is going to end up its “motion” at the boundary of this space. The
exponentα+ responsible for this process of convergence or divergence is associated with
particular Kleinian (Möbius) group0 so that different groups may have different exponents.
To facilitate reader’s understanding, we would like to provide an introduction into these
very interesting topics in Section 5.
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5. The limit sets of Kleinian groups

By definition, the Kleinian groups are groups of isometries ofH 3 (or B3), e.g. see [8],
while the Möbius groups are groups of isometries ofHd+1 (or Bd+1) for d ≥ 1. Hence, the
Kleinian groups are just a special case of the Möbius groups. Recall also that the Kleinian
groups are just complex version of the Fuchsian groups acting onH 2.

Let 0 be one of such groups and letγ ∈ 0 be some representative element of such a
group. For an arbitraryx ∈ Hd+1 the group0 actsdiscontinuouslyif γ x ∩ x is nonempty
only for finitely manyγ ∈ 0. In particular, the finite subgroupG0 is calledstabilizerof the
group0 if gx∗ = x∗ for g ∈ G0 ∈ 0 andx∗ ∈ Hd+1. The fixed point(s)x∗ could be either
inside ofHd+1 or at its boundaryRd . Every discontinuous group is alsodiscrete[65]. A
group0 is discreteif there is no sequenceγn → I, n = 1, 2, . . . , with all γn being distinct.
Discreteness implies that for anyx ∈ Bd+1, the orbitγ x, γ 2x, γ 3x, . . . accumulates only
atSd∞, e.g. see [10,65,66].

An orbit which has precisely one fixed point onSd∞ is being associated with theparabolic
subgroup elements of0, while an orbit which has two fixed points onSd∞ is being associated
with thehyperbolicsubgroup elements of0. Some important physical applications of these
definitions associated with Thurston’s theory of measured foliations and laminations had
been recently discussed in our papers [37,38] in connection with description of dynamics
of 2+1 gravity and disclinations in liquid crystals.

There are alsoelliptic transformations but their fixed points always lieinside Bd+1

and, therefore, are not of immediate physical interest. The parabolic transformations are
conjugate to translations T :x → x + 1 (in Hd+1 model these motions are motions inRd

which leave the “time” axisz unchanged). The hyperbolic transformations are conjugate
to dilatations D :x → kx with k > 0 andk 6= 1, while the elliptic transformations are
conjugate to rotations R :x → eiθ x about the origin.

The question arises: how to describe the limit set3 of fixed points which belong toSd∞?
First, it is clear that by construction,3 is a closedset since for allx ∈ Bd+1 the orbit
{γ x} ∈ 3. Second, it can be shown [66] that3 may either contain no more than two points
(elementaryset) or uncountable number of points (non-elementaryset). In the last case
either3 = Sd∞ or 3 is nowhere dense inSd∞. The Möbius (or Kleinian) groups for which
3 = Sd∞ are known as the Möbius (or Kleinian) groups of thefirst kind while the Möbius
(or Kleinian) groups for which3 6= Sd∞ are known as groups of thesecondkind. The main
goal of the subsequent discussion is to provide enough evidence to the fact that the Green’s
function for the hyperbolic Laplacian, Eq. (3.6),exist if and only ifthe Möbius group0 is
of convergence type(that is the Poincaré series, e.g. see Eq. (5.7), is convergent). In [25],
it is demonstrated that every Möbius group of thesecondkind is of convergence type. This
implies that the correlation function exponent, e.g. see Eq. (4.16), is associated with the
Hausdorff dimension of the limit set3, which thus forms a fractal.

Let us begin with the fundamental property of the hyperbolic Laplacian expressed in
Eqs. (3.13a) and (3.13b). This property implies that in the hyperbolic spaceBd+1 the
Dirichlet (or Plateau) problem can be consideredonly in conjunction with the group of
motions (isometries) in this space. In particular, let us consider an analog of the Poisson
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formula, Eq. (2.14), for the hyperbolicBd+1 model. We have

ϕ(x) = 1

ωd

∫
Sd∞

dω(x′)
(

1 − |x|2
|x − x′|2

)d

ϕ0(x
′), (5.1)

where dω is the areal measure ofSd∞. Consider now a special case of Eq. (5.1) when
ϕ0(x) = const. Then, evidently,ϕ(x) = const too since the r.h.s. is constant by requirement
of normalization as it was discussed in Section 3. This means, in turn that Eq. (4.16) does
not exist forϕ0(x) = const. Assume now thatϕ0(x) is given byχ(x) with χ(x) being
the characteristic function of the set3 ∈ Sd∞. Let us assume furthermore, in accord with
definitions provided earlier thatχ(γ x) = χ(x) (since the set3 is closed) withγ ∈ 0.
Then, using Eq. (5.1), we obtain

ϕ(γ x) = 1

ωd

∫
Sd∞

dω(x′)
(

1 − |γ x|2
|γ x − γ x′|2

)d

|γ ′(x′)|dχ(x′). (5.2)

But, since it is known [25] that

1 − |γ x|2 = |γ ′(x)|(1 − |x|2), |γ x − γ x′|2 = |γ ′(x)||γ ′(x′)||x − x′|2,
whereγ ′(x) = dγ /dx, we obtain

ϕ(γ x) = 1

ωd

∫
Sd∞

dω(x′)
(

1 − |x|2
|x − x′|2

)d

χ(x′), (5.3)

i.e.

ϕ(γ x) = ϕ(x). (5.4)

This means that the functionϕ(x) is automorphic. Since the Poisson kernel in Eq. (5.3)
is related to the corresponding Poisson kernel, Eq. (3.14), inHd+1 model, and, therefore,
is related to the eigenfunctionzd of the hyperbolic Laplacian defined by Eqs. (3.7) and
(3.8), we conclude thatϕ(x) is hyperharmonic and is nonconstant. This, however, cannot
be the case for any nonzero areal measure, i.e.∀χ(x) dω 6= 0. To understand why this is so
several facts from the theory of fractals are helpful at this point. Following Mandelbrot [67],
let us recall the Olbers paradox. Consider an observer in flat Euclidean Universe (which
is assumed to be three-dimensional) located at some fixed point chosen as an origin. The
amount of light reaching an observer coming from some star located at distance∼ R is
known to scale asR−2. At the same time, if the density of stars is roughly uniform, then
the total mass of stars in the spherical volume of radiusR is ∼ R3 so that the number of
stars located at the visual sphere of radiusR is ∼ R2 and, therefore, the amount of light
coming to observer is of order∼ R2 ·R−2 = const, i.e. the sky in such Euclidean Universe
is uniformly lit day and night. This is, of course, not true. The resolution of this paradox can
be reached if one assumes that the distribution of stars is that characteristic for fractals with
the total mass of stars on the visual sphere being∼ RD, where the fractal dimensionD < 2.
That this is indeed the case was demonstrated by Sullivan [68] (and, independently, by Tukia
[69]) based on earlier work by Thurston [43] provided that our Universe isnot Euclidean
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but hyperbolic. Both Thurston and Sullivan werenot concerned with Olbers paradox but
rather with the fractal dimension of the limit set3, which is located at the sphere at infinity
S2∞ in B2+1 model of hyperbolic space. Using intuitive terminology, their results could be
stated as follows.

Let B0 be some small ball located inside the hyperbolic spaceB3 at some pointa ∈
B3. Let the non-Euclidean radiusρ of B0 be so small that the images ofB0 given by
γB0, γ

2B0, . . . , γ ∈ 0, do not overlap. Instead of balls consider now their “shadows”
on S2∞ (as if insideB0 there is a source of light which illuminatesB3 Universe). Denote
γB0 = B1, . . . , γ nB0 = Bn, etc., and, accordingly, for shadows,B ′

1, B
′
2, . . . , B ′

n, . . . .
Let nowL = ⋃

iB
′
i so that the areal measureω ≡ m(L).

The Thurston–Ahlforstheorem[25] can now be informally stated as follows:

If
∑∞

i=0m(B ′
i ) < ∞,

then m(L) = 0 and vice versa.

The above is possible only if some of the shadows of the ballsBi lie completely (or partially)
insidethe shadows of other balls (located closer toB0). The hard part of the proof of this
theorem lies precisely in proving that thisis the case. We are not going to reproduce the
details of the proof in this paper (the reader is urged to consult [25,32, Section 9.9] for
elegant and detailed proofs). Rather, we would like to state the same results in more precise
terms. This can be done by noticing that if∫

dω(x)χ(x) = 0, (5.5)

then the Poincaré series (e.g. see Eq. (4.19)) converges, i.e.∑
γ∈0

exp{−αρ(x, γ x′)} < ∞ (5.6)

and vice versa, or, equivalently, if∫
dω(x)χ(x) = ωd (5.7)

with ωd being given by Eq. (3.18), then∑
γ∈0

exp{−αρ(x, γ x′)} = ∞. (5.8)

Let us explain the obtained results in more physically familiar terms. First, in view of the
results of Section 4, it is clear that the results obtained above could be equivalently stated in
terms of recurrence (transience) of random walks. Next, let us examine closer the Poisson
kernel in Eq. (5.1), i.e.

P α
H (x, x′) =

(
1 − |x|2
|x − x′|2

)α

, (5.9)

where we had replacedd in Eq. (5.1) byα for reasons which will become clear shortly
below. Notice thatx′ ∈ Sd∞ while x ∈ Bd+1 in Eq. (5.9). Consider the horoball centered at
x′ ∈ Sd∞ and passing through pointx ∈ Bd+1 as depicted in Fig. 1.
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Fig. 1. Some geometric relations in the hyperbolic ball model.

Using the cosine theorem for the anglexox′ in the triangle1xox′ , we obtain

|x|2 + 1 − 2|x| cos(xox′) = |x − x′|2. (5.10)

Alternatively, by using the triangle4xoc, we get

|x|2 + |w + 1
2(1 − w)|2 − 2|x||w + 1

2(1 − w)| cos(xox′) = 1
4(1 − |w|)2. (5.11)

By eliminating cos(xox′) from these two equations, we obtain

1
2(1 + |x|2 − |x − x′|2) = 1 + |x|2 − 1

1 + |w| . (5.12)

This result can be equivalently rewritten as

1 − |w|
1 + |w| = |x − x′|2

|x|2 − 1
. (5.13)

Thehyperbolicdistanceρ(0, w) is known to be [65]

ρ(0, w) = ln

(
1 + |w|
1 − |w|

)
. (5.14)

Accordingly, the Poisson kernel, Eq. (5.9), can be equivalently rewritten as

PH(x, x′) = exp{αρ(0, w)}. (5.15)

The hyperbolic Fourier transform can be defined now as [70]

ϕα(x) = 1

ωd

∫
Sd∞

dω(x′) exp{α〈x, x′〉}ϕ̂(x′) (5.16)

with scalar product〈x, x′〉 being defined through the hyperbolic distanceρ(0, w) according
to Eqs. (5.13) and (5.14).
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With the help of the results just obtained, it is possible to give better interpretation of the
Ahlfors–Thurston theorem. Indeed, in view of Eqs. (5.2)–(5.4) we obtain

ϕ(0) = 1

ωd

∑
γ∈0

∫
Sd∞

dω(x′)
(

1 − |γ (0)|2
|γ (0) − x′|2

)d

χ(x′), (5.17)

where, without loss of generality, we had putx = 0 (i.e. placed the initial pointx at the
center ofBd+1). Surely,|γ (0) − x|2 ≤ 4 since we are dealing with the ball of unit radius.
Therefore, we also have

ϕ(0) <
1

ωd

∑
γ∈0

∫
Sd∞

dω(x′)(1 − |γ (0)|2)dχ(x′). (5.18)

Consider now the convergence (or divergence) of the series

Sd =
∑
γ∈0

(1 − |γ (0)|2)d (5.19)

or, more generally,

Sα =
∑
γ∈0

(1 − |γ (0)|2)α. (5.20)

Clearly, the last expression is going to be divergent or convergent along with

gα(0, 0) =
∑
γ∈0

(
1 − |γ (0)|
1 + |γ (0)|

)α

=
∑
γ∈0

exp{−αρ(0, γ (0))} (5.21)

in view of Eqs. (4.19) and (5.14). But the convergence (divergence) of the Poincaré series,
Eq. (5.21), leads us to the results given by Eqs. (5.5)–(5.8) and also to earlier stated result,
Eq. (4.19).

The results just obtained admit yet another interpretation. Convergence (or divergence) of
the series, Eq. (5.21), is associated with existence or nonexistence of the Green’s function
acting inBd+1 as we had mentioned already before Eq. (5.1). Deep results of Ahlfors
[25], Patterson [41], Sullivan [42] Thurston [43] and Beardon [71] state that if the Poincaré
series converges, then the Green’s function inBd+1 exist and the limit set3 ⊂ Sd∞ is
fractal withareal measure equal to zero butHausdorffdimension equal toα (in this case
α lies at the border between the convergence and divergence of the series, Eq. (5.22)) and,
for d = 2, α ≤ 2 according to Sullivan [68] and Tukia [69]. Additionally very important
results related to the limit set3 were obtained by Beardon and Maskit [10] who had proved
the following theorem.

Theorem 5.1(Beardon and Maskit [10]).Let0 be a discrete Möbius group of isometries
of H 3, then if0 is geometrically finite, the limit set3 comprises of parabolic limit points
and conical limit points.

We would like now to explain the physical significance and the meaning of these state-
ments. First, by looking at Eqs. (4.12) and (4.16) we conclude thatm2 ≤ 0 (because of the
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results of Sullivan and Tukia). Second, for the group0 to begeometrically finite(in B3) it
is required that the fundamental domain for0 is being made of finite-sided polyhedron P in
B3 (just like for the Riemann surface of finite genus we should have a finite-sided polygon
in the unit disk D whose boundary at infinity isS1∞). Every hyperbolic manifoldM3 is
defined through use of some fundamental polyhedron P so that, in fact [43],

M3 = B3 ∪ �

0
, (5.22)

where� = S2∞ − 3 is the open set of discontinuity of0. In general,� represents some
collection of Riemann surfaces which belong to the boundary ofM3. This fact has some
relevance to problems associated with 2+1 gravity as explained in [37,38]. The boundary
set� is not accessible dynamically, however, since it is acomplementof the limit set3
in S2∞. Based on the information provided, study of hyperbolic 3-manifolds is equivalent
to study of the action of discrete subgroups0 of the Möbius groupG on H 3 (or B3). In
particular, if the quotient, Eq. (5.23), is compact, then0 is said to becocompactand if the
quotient, Eq. (5.23), has finite invariant volume, then0 is said to becofinite. Incidentally, if
0 contains parabolic subgroups, then0 is not cocompact. As it was shown by Thurston [43]
(for some illustrations, please see also [72]), complements of most of the knots embedded in
S3 are associated with the hyperbolic 3-manifolds. Accordingly, if CFT are to be associated
with knots/links (e.g. see [3,5,6]), then the corresponding complements of such knots/links,
most likely, should be associated with the hyperbolic 3-manifolds. Moreover, the spectral
characteristics of different hyperbolic manifolds should be different as well [28]. This dif-
ference should be also connected with difference in fractal dimensions of the corresponding
limit sets which, in turn, will correspond to different types (universality classes) of the CFT.
Conversely, given the fractal dimension of the limit set3, is it possible to determine the
Kleinian (or Möbius) group (or groups) which is associated with this limit set? Evidently,
this problem is more complicated than the direct one. Nevertheless, the above discussion
is not limited toH 3 (or B3) and, therefore, it becomes potentially possible to study and to
classify boundary CFT in dimensions higher than 2. More on this subject is presented in
Sections 7 and 8.

Let us now give the precise definitions of parabolic and conical limit points which were
mentioned in the theorem by Beardon and Maskit stated above. An extensive discussion
of both parabolic and conical limit points (and sets) could be found in [73]. From this
reference we find that “for any discrete group the set of bounded parabolic points and
the set of conical limit points are disjoint”. Given this, and recalling that the parabolic
transformations are associated with translations, we are left with the following two options
(in the case ofH 3): (a) the parabolic subgroup has just one generator of translations so
that the “fundamental polyhedron” is the region between two parallel planes as depicted in
Fig. 2. (Such a construction is called rank 1 ( or Z-cusp). Topologically motion⊥ to these
planes is the same as motion on the circleS1 as it was recently discussed at some length
in [72] in connection with some problems in polymer physics. Accordingly, such parabolic
subgroup is isomorphic toZ.) (b) The parabolic subgroup has two generators so that the
“fundamental polyhedron” is the region defined by the transverse pairs of parallel planes, as
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Fig. 2. A typicalZ-cusp in the upper half-space model realization ofH 3.

depicted in Fig. 3. Such construction is called rank 2 (orZ⊕Z)-cusp. Topologically, motion
⊥ to such planes is being associated with the motion on the torus. The restriction to have
only Z andZ ⊕ Z-cusps for hyperbolic 3-manifolds imposes very important restrictions on
the boundary CFT to be discussed in Section 7.

The conical limit set is not specific to the hyperbolic spaces. According to Axler et al.
[40], in the case of Euclidean half-spaceHn for which the typical pointy = (x, z), z >

0, x ∈ Rn−1, the conical limit set0α(a) is defined through

0α(a) = {(x, z) ∈ Hn : |x − a| < αz}. (5.23)

Geometrically,0α(a) is a cone as depicted in Fig. 4 with vertexa and axis of symmetry
parallel toz-axis.

A functionu defined onHn is said to havenontangential limitL ata ∈ Rn−1 if for every
α > 0, u(y) → L asy → a within 0α(a). The term “nontangential” is being used because
no curve in0α(a) that approachesa can be tangent to∂Hn = Rn−1. It is quite remarkable
that such nontangential behavior is being observed already for harmonic functions on Eu-
clidean half-spaceHn [40]. Use of stereographic projection allows us to formulate the same

Fig. 3. A typicalZ ⊕ Z-type cusp in the upper half-space realization ofH 3.
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Fig. 4. The light cone associated with the conical limit set point located at the boundary of hyperbolic space.

problem in the Euclidean ballBn. Respectively, exactly the same definitions are extended
to Hd+1 andBd+1. Specifically, in the case ofBd+1 model one can say thatx ∈ Bd+1

belongs to the cone atξ ∈ Sd∞ of openingλ and, further,|x − ξ | < 2 cosλ. Analogous to
Eq. (5.23), one can write

|x − ξ | < α(1 − |x|), α > 0. (5.24)

With such background, we would like to discuss in some detail the spectral theory of
hyperbolic 3-manifolds. This is accomplished in Section 6.

6. Spectral theory of hyperbolic 3-manifolds

In Section 3 we had discussed the eigenvalue equation, Eq. (3.7), so that, naively, one
might think that this equation provides the complete answer to the question about the spec-
trum of hyperbolic Laplacian. This is not true, however. Surprisingly, this problem still
remains a very active area of research in mathematics. For a comprehensive and very up to
date introduction to this field, see [28]. The fact that the spectral theory of hyperbolic Lapla-
cians is absolutely essential for understanding of the spectrum of Hausdorff dimensions of
the limit set3 was realized already by Patterson [74–76] long time ago. Since, even now,
the spectrum issue is not completely settled, we would only like to give an outline of the
current situation leaving most of the details for future work.

In his 1987 paper, Sullivan [77] had stated the Theorem (2.17) (numeration taken from his
work) which he calls the Patterson–Elstrodt theorem (incidentally, the recent monograph is
written by Elstrodt [28]). Based on the results of previous sections it can be formulated as
follows:

Theorem 6.1(Patterson–Elstrodt–Sullivan).Let

−1hϕ = λϕ (6.1)



A.L. Kholodenko / Journal of Geometry and Physics 35 (2000) 193–238 215

be the eigenvalue problem for the hyperbolic Laplacian onMd+1 = Hd+1/0, then the
lowest eigenvalueλ0(M

d) satisfies

λ0(M
d+1) =

{ 1
4d2 if α ≤ 1

2d,

α(0)(α(0) − d) if α ≥ 1
2d,

(6.2)

whereα(0) is the “critical” exponent of the Poincaré series, Eq.(4.19)or Eq. (5.21).

By looking at Eqs. (4.11) and (4.12), these results can be restated as

m2 =
{

λ0 if α ≥ 1
2d,

−1
4d2 if α ≤ 1

2d.
(6.3)

Additional work by Patterson [78] indicates that, at least forM3, 0 < α ≤ 2. In view of this,
by looking at Eq. (4.12), it is reasonable to consider both “+” and “−” branches of solution
for α, provided that−1

4d2 < m2 ≤ 0. This possibility, indeed, had been recognized in [79].
The results obtained by Lax and Phillips [80] (and also by Epstein [81]) indicate that for
3-manifoldswithout parabolic cuspsthe spectrum of−1h acting onL(M3) normed metric
Hilbert space is of the form:

{λ0, . . . , λk} ∪ [ 1
4d2, ∞), (6.4)

where

0 < α(d − α) = λ0 < λ1 < · · · < λk < 1
4d2 (6.5)

are eigenvalues of finite multiplicity andλ0 has multiplicity 1. Moreover, the part of spectrum
[ 1

4d2, ∞) is absolutely continuous (i.e. form2 ≤ −1
4d2 the spectrumis continuous). The

problem with Lax–Phillips [80] and Epstein [81] works lies, however, in the fact that the
explicit form of the discrete spectrum had not been obtained. Only the existence of such
possibility had been proven.

Remark 6.2. In view of Beardon–Maskit theorem(Section5) one cannot bypass careful
study of the spectrum of hyperbolic Laplacian for some discrete subgroups0 of Möbius
group G if one is interested in finding the correct fractal dimension of the limit set3.

For the sake of applications to statistical mechanics (e.g. see Section 7) one is also
interested in spectral properties of 3-manifolds with parabolic cusps. This can be intuitively
understood already now based on the following arguments. If we would choose the sign
“−” in Eq. (4.12) (which by the way would produce “+” sign in front of Eq. (4.16)), then for
m2 in the range−1

4d2 ≤ m2 < 0 we would haveα in the range 0< α ≤ 1 for d = 2. This
range is of interest since it covers all physically interesting CFT discussed in the literature
[9]. If α is to be associated with the Hausdorff dimension of the limit set3, then according
to Sullivan [68, Theorem 2], only 3-manifolds with no cusps or rank 1 (Fig. 2) cusps will
yield α in the desired range. The spectral theory of hyperbolic manifolds with cusps is still
under active development in mathematics [29]. Therefore, we would like to restrict ourself
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with some qualitative estimates of the spectrum based on topological arguments. Here and
below we shall discuss only the cased = 2 (i.e.H 3 or B3). This restriction is by no means
severe. It is motivated only by the fact that more explicit analytical results are available for
this case in mathematics literature. This, however, doesnot imply that the cased = 2 is
more special than sayd = 3. For instance, Burger and Canary [82] had demonstrated that
for anyd > 1, the Hausdorff dimensionα is bounded by

α ≤ (d − 1) − Kd

(d − 1)vol(C(Md))2
, (6.6)

whereKd andC(Md) are somed-dependent constants which can be calculated in principle.
In the case if hyperbolic manifoldM3 is topologicallytame(i.e. it is homeomorphic to

the interior of a compact 3-manifold), then Theorem 2.1 of Canary et al. [83] is stated as
follows.

Theorem 6.3(Canary, Minsky and Taylor [83]).If M3 is topologically tame hyperbolic
3-manifold, then the lowest eigenvalueλ0 of the hyperbolic Laplacian(−1h) is given by
λ0 = α(2 − α) unlessα < 1, in which caseλ0(M

3) = 1.

Remark 6.4. As before,α is the Hausdorff dimension of the limit set3.

Remark 6.5. From Theorem6.3, it appears that the results of Section4 become invalid
whenα < 1 since Eq.(4.12)cannot be used. The situation can be easily repaired as it is
explained in Section7.

Remark 6.6. Theorem6.3allows us to obtain the following additional estimates based on
recent results by Bishop and Jones[44].

Theorem 6.7(Bishop and Jones [44]).Let0 be any discrete Möbius group and letM3 =
(B3 ∪ �)/0. Suppose that the lowest eigenvalueλ0 is nonzero. Then, there are constants
C < ∞ andc > 0 (depending uponλ0 only) so that for any x, y withρ(x, y) ≥ 8 we have

G(x, y) =
∫ ∞

0
dt G(x, y; t) ≤ C

λ0
exp{−cρ(x, y)}, (6.7)

whereρ(x, y) is the hyperbolic distance between x and y andc = min{1
8λ0,

1
4}.

Corollary 6.8. Using this result in combination with Eqs.(4.18) and (4.19)and Theorem
6.3,we obtain, α = 1

8λ0 = 1
8. If this result is substituted into Eq.(4.16)we obtain the exact

result for two-point correlation function of two-dimensional Ising model.

Remark 6.9. The theorem of Bishop and Jones depends crucially on the explicit form for
the heat kernelG(x, y; t) in H 3. Quite recently, Grigoryan and Noguchi[84] had obtained
explicit formulas for the heat kernel for hyperbolic space of any dimension. This opens
a possibility to obtain an analog of inequality(6.7) in any dimension following ideas of
Bishop and Jones.
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Fig. 5. Geometry of geodesics in the ball model of hyperbolic space.

With all plausibility of the Corollary 6.8, it remains to demonstrate that such substitution
ofα into Eq. (4.16) is indeed legitimate. To this purpose we would like to provide a somewhat
different interpretation of Eq. (4.16) in order to demonstrate that Eq. (4.17) makes sense
even without arguments associated with Plateau/Dirichlet problem. To begin, we would
like, by analogy with the Liouville theorem in standard textbooks on statistical mechanics,
to construct a measure associated with the geodesic flow in hyperbolic space.

Following [25], we would like to associate with each pointx ∈ Bd+1 ≡ B a unit vector
ξ ∈ S = Sd of directions. This vector plays the same role as velocityv in conventional
statistical mechanics. Indeed,∀v 6= 0one can construct a vectorξ = v/|v| and then proceed
with standard development. The Möbius group0 is acting on the phase spaceT (B) = B×S

according to the rule

(x, ξ) →
(

γ x,
γ ′(x)

|γ ′(x)|ξ
)

∀γ ∈ 0. (6.8)

The invariant phase space volume element d� is given therefore by

d� = dxh dω(ξ) (6.9)

with dω(ξ) being the spatial angle measure and dxh being an element of a hyperbolic
volume. The above chosen variables may not be the most convenient ones. More convenient
are variables associated with actual location of the ends of geodesicsu andv onSd∞. This
situation is depicted in Fig. 5.

It is clear that∀x ∈ B one can select a geodesic which passes throughx. To this purpose
it is not sufficient to assignu andv on Sd∞ but, in addition, one has to provide a location
α̂(u, v) of the midpoint for such geodesics. Lets be the directional hyperbolic distance
betweenα̂ andx, then one should be able to find a correspondence between (x, ξ) and
(u, v, s), i.e. one should be able to find a diffeomorphism betweenB ×S andS ×S ×R, i.e.
one expects to find an explicit form of the functionf (u, v), which enters into the expression
for the volume element given below:

d� = dxh dω(ξ) = f (u, v) dω(v) dω(u) ds. (6.10)
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A simple argument given in [25] produces

f (u, v) = G

|u − v|2d
(6.11)

with G being some normalization constant. Looking now at Eq. (3.22), it is clear that one
can now replace it with

D̂[ϕ] =
∫

d�

ds
ϕ0(u)ϕ0(v). (6.12)

It is also clear, in view of the transformation properties of the functionϕ0 given by Eq. (4.14)
that, in general, one can replace Eq. (6.12) with

D̂[ϕ] = G

∫
ϕ0(u)ϕ0(v)

|u − v|2α
dω(v) dω(u), (6.13)

where the exponentα is associated with the Hausdorff dimension of the limit set3. This
is indeed the case, e.g. see [66, p. 286]. Thus, the exponentα in Eq. (6.13) isthe sameas
the exponentα in Eq. (5.21). This observation provides the necessary support to the claims
made after Eq. (6.7).

Given all above, the obtained results show no apparent connections with the existing
formalism of CFT. We would like to correct this deficiency in Sections 7 and 8.

7. Connections with the existing formalism of CFT

In Section 5, we had introducedZ andZ ⊕ Z-cusps, e.g. see Figs. 2 and 3. According to
Sullivan [68], only 3-manifolds with no cusps or justZ-cusps will produce limit sets3 with
Hausdorff dimensionα in the range 0< α ≤ 1. Naively, it means that only consideration
of the CFT on the strip with periodic boundary conditions (thus making it a cylinder) will
yield the critical exponents for two-point correlation functions in the above range. This case
is, indeed, frequently discussed in physics literature [9]. For the strip of widthL use of the
conformal transformation

z′ = w(z) = L

2π
ln z (7.1)

is converting the strip of widthL to the entire complex plane (rigorously speaking, we are
dealing here withC\{0} complex plane [85]). Although the above discussion appears to
be plausible, the description ofZ-cusps (as well asZ ⊕ Z-cusps) is actually considerably
more sophisticated. In this paper we only provide a brief outline of what is actually involved
reserving full treatment for future publications.

In Section 5 we had noticed that3 may contain no more than two limiting points (ele-
mentary set) or infinite number of points (non-elementary set). The Kleinian groups which
are associated with the elementary limit sets are known [8,32] and, basically, are reducible
to the following list:
1. A parabolic infinite cyclic Abelian group0 : z → z + 1.
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2. A parabolic rank 2 Abelian group0 : z → z + 1, z → z + τ ; Im τ > 0.
3. A loxodromic cyclic group0 : z → λz with λ ∈ C\{0, 1}.

Let nowM3 be some 3-manifold and letM(0,ε) be a subset of pointsp ∈ M3 such that
there is a closed nontrivial curve passing throughp whose hyperbolic lengthl is less than
ε. Then, ifε < 2r0, wherer0 is some known (Margulis) constant, theM(0,ε) part ofM3 (the
“thin part”) is a quotientH 3/0, where0 is just one of these three elementary groups. The
complement ofM(0,ε) in M3 is called “thick” part. The above construction is not limited to
M3 and is applicable toanyMd+1 (with Margulis constant being, of course, different for
differentd ’s). The “thin” part is associated withZ andZ ⊕ Z-cusps.

Remark 7.1. Recently, we had briefly considered the “thick”–“thin” decomposition of
hyperbolic 3-manifolds in connection with dynamics of2+1 gravity [38]. For a compre-
hensive mathematical treatment of these issues, please consult[43,73,86].

To realize that the “thin” part is associated withZ-cusps, it is sufficient to look atH 2

model of hyperbolic space first. In this case, the following theorem can be proven [87].

Theorem 7.2. Let G be a Fuchsian group operating onH 2. If G contains a parabolic
element, thenH 2/G contains a puncture. The number of punctures is in one-to-one corre-
spondence with the number of conjugacy classes of parabolic elements.

Recall now that in three-dimensional case� = S2∞ − 3 and, using [46], it is possible to
show that�/0 is just a collection of Riemann surfaces. In the case if we are dealing with
Z-cusps these surfaces will contain punctures as it was first noticed by Ahlfors [88]. The
number of cusps (=punctures)Nc is related to the number of generatorsN of the Kleinian
group acting onH 3. According to Sullivan [89] (and also Abikoff [90]),

Nc ≤ 3N − 4. (7.2)

In the language of the CFT the punctures are usually associated with the vertex operators
[9]. The presence of punctures converts Riemann surfaceR = �/0 into the marked
Riemann surface [27]. We shall, for simplicity, treat the quotient�/0 as justoneRiemann
surface (unless the otherwise is specified) keeping in mind that there could befinitelymany
(Ahlfors finiteness theorem [88]). Among marked surfaces one can choose some reference
Riemann surfaceX for which the marking is fixed. Then,othersurfaces could be related
to X via homeomorphismf : R → X sending the orientation onR into orientation
on X. The Teichmüller space, Teich(R), is related to the conformal structures onR in
which each boundary component corresponds to a puncture. Two marked surfaces (f1, R1)
and (f2, R2) definethe samepoint in Teichmüller space Teich(R) if there is a complex
analytic isomorphismi : R1 → R2 such thati ◦ f1 is homotopic tof2. Two surfaces
R1 andR2 belong to two different points in Teichmüller space if the Teichmüller metric
(distance)

d(R1, R2) = 1
2inf ln K(φ) (7.3)
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is greater than zero. Hereφ : R1 → R2 ranges over all quasiconformal maps in the
homotopy classf2 ◦f −1

1 (relative to the punctures) so thatK(φ) is themaximum dilatation
of φ. The above formula is not immediately useful since we have not defined yet what is
meant by dilatation. To correct this deficiency, let us consider the Beltrami coefficient (for
suggestive physical interpretation, please consult [38])

µf = ∂z̄f (z)

∂zf (z)
. (7.4)

For functionsf1 andf2 introduced above we obtain, respectively,µ1 andµ2. Then, the
maximum dilatation can be defined as

K(φ) = 1 + r

1 − r
, r =

∥∥∥∥ µ1 − µ2

1 − µ̄1µ2

∥∥∥∥∞
, (7.5)

according to [30,31,45], with‖ · · · ‖∞ being determined by the requirement [45]:

‖µf (z)‖ = sup
z∈R

|µf (z)| < 1. (7.6)

From the above results, it follows that ifγ ∈ 0 andz ∈ S2∞, then

µ(γ (z))
γ̄ ′(z)
γ (z)

= µ(z) ∀z ∈ �, (7.7)

µ(z) = 0 ∀z ∈ 3. (7.8)

Let us now fixµ and introducef µ(z) instead (i.e.f µ(z) is some function which produces
the Beltrami coefficient according to Eq. (7.4)). The mapping0 → 0µ given byγ →
f µ ◦γ ◦ (f µ)−1 is calledquasiconformal(orµ-conformal) deformation. Let us notice now
that normally the Riemann surfaceR is being defined as quotientR = H 2/G, whereG is
some discrete Fuchsian group. In the case ofS2∞, we have a rather peculiar situation: Kleinian
group0 ⊂ PSL2(C)playsthe samerole as FuchsianG ⊂ PSL2(R). One can bring these two
together by noticing thatH 2 model corresponds to an open disk D. Then, one can glue two
copies of D together thus formingS2∞. Kleinian group0 acting onS2∞ can be considered as
Fuchsian on each of these two disks. The mapping0 → 0µ may affect the gluing boundary
between the two disks. If we usef µ to produce “new” group from the “old”, i.e.

γ µ = f µ ◦ γ̂ ◦ (f µ)−1, (7.9)

then thus obtained new group is calledquasi-Fuchsian(provided thatγ̂ is Fuchsian) if the
gluing boundary between two disks is still topologically a circleS1 (e.g. see Thurston’s lec-
ture notes [43, Section 8.34]. This gluing boundary may include3 as a part only, or it could
be that3 = S1. Recently, Canary and Taylor [47] had proved the following remarkable
theorem.

Theorem 7.3 (Canary and Taylor [47]).Let 0 be a non-elementary finitely generated
Kleinian group and let3 denote its limit set. If the Hausdorff dimensionα of 3 is less than
1, then0 is geometrically finite and has a finite index subgroup which is quasiconformally
conjugate to a Fuchsian group of the second kind.
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Remark 7.4. Recall[91] that for the Fuchsian groups of the second kind, the limit points are
nowhere dense onS1. Since, according to the results of Section6, we are interested mainly
in theα-domain given by0 < α ≤ 1,we notice that we have to deal with the quasiconformal
deformations ofS1 associated with the Fuchsian groups of the second kind.

For completeness, we would also like to provide the results related mainly to the Fuchsian
groups of thefirst kind for which the limit set3 coincides withS. These are summarized
in the following theorem.

Theorem 7.5 (Canary and Taylor [47]).Let 0 be a non-elementary finitely generated
Kleinian group and let3 denote its limit set. Ifα = 1, then0 is either a function group
with connected domain of discontinuity or contains a subgroup of index at most2, which is
the Fucsian group of the first kind. Alternatively, ifα = 1 and0 is geometrically finite, then
either0 has a finite index subgroup, which is quasiconformally conjugate to a Fuchsian
group of the second kind or0 contains a subgroup of index at most2,which is the Fuchsian
group of the first kind.

Remark 7.6. Much earlier, Bowen[92] had proven an analogous theorem for the Fuchsian
groups of the first kind. According to Bowen, the Hausdorff dimension of3 is greater than
1.Since Bowen’s proof is nonconstructive, there is no way to estimate, based on his results,
to what extentα is larger than1. Thus, there is no contradiction between Theorem7.5and
Bowen’s results sinceα can be infinitesimally close to1.

Remark 7.7. For the case of Fuchsian groups of the first kind it is known[93] that �/0

consists of exactly two Riemann surfaces: one for each disk D. It is also known[46] that
for the Fuchsian group of the second kind,�/0 is made of just one Riemann surface so
thatS2∞ is boundary at infinity for this surface.

In mathematics literature[32] a finitely generated non-elementary Kleinian group which
has just one invariant component� is called function group. If, in addition, � is simply
connected, then such a group is called B-group. More complicated Kleinian groups could
be constructed from simpler ones and B-group is one of the main building blocks in such
construction[94].

Remark 7.8. In string theory (and, therefore, in the CFT) the Schottky-type groups are
being used[95]. The Schottky group is a function group but not a B-group[32].

Remark 7.9. There is one-to-one correspondence between the quasiconformal deforma-
tions of Kleinian groups and the quasi-isometric deformations of hyperbolic 3-manifolds.
The theory is not limited to3-manifolds, however, and can be considered for any
d ≥ 2.

Theorem 7.10. For a quasiconformal automorphism f ofS2∞ compatible with a Kleinian
group0, there exist a quasi-isometric automorphism F ofH 3 which is an extension of f
and which is compatible with0, namely, F ◦ γ ◦ F ∈ Möb (B3) for anyγ ∈ 0.



222 A.L. Kholodenko / Journal of Geometry and Physics 35 (2000) 193–238

Proof. Please consult [32, p. 157]. �

Remark 7.11. The above theorem follows directly from the discussion related to Eqs.
(7.7)–(7.9)and for additional details and motivations, please consult the work by Bers
[46].

Remark 7.12. The above theorem is applicable to the case when, instead ofS2∞, we use
S1∞ (taking into account the results of Canary and Taylor, Theorems7.3 and 7.5).

The observations presented above allow us to make a direct connection with the existing
results associated with two-dimensional CFT. To begin, let us notice that if we would have
S1∞ as limit set3 for some Fuchsian group of the first kind, then according to Eq. (7.8), we
could not use the quasiconformal mapping and, accordingly, we would be stuck with just
one conformal structure. This fact is known in mathematics as Mostow rigidity theorem.
Usually, this theorem is applied to spaces of dimensionality≥ 3 (for more details, please
see Section 8). At the same time, if we utilize Fuchsian groups of the second kind, then, we
need to deal with maps ofS1∞ acting on some open intervals (since3 is closed set) ofS1∞.
This is not exactly the situation which is known in physics literature. Indeed, in physics
literature on CFT one is dealing with the Virasoro algebra. Let us recall how one can
arrive at this algebra. Following [58], let us consider the groupG = Diff S1 of orientation
preserving diffeomorphisms ofS1∞. Let α1(z) andα2(z) be two elements ofG, then the
group composition law can be defined by

α1 ◦ α2(z) = α1(α2(z)), z = exp{iθ}. (7.10)

The representation of the groupG is defined according to the following prescription:

U(α)f (z) = f (α−1(z)), (7.11)

where the operatorU(α) acts on the vector space ofsmoothcomplex-valued functions on
S1∞. The explicit form of the operatorU(α) can be easily found if one notices that

α(z) = z(1 + ε(z)) = z +
∞∑

n=−∞
εnz

n+1, εn → 0+. (7.12)

Using this expansion and keeping only terms up to first-order inεn, we obtain

U(α)f (z) = f

(
z −

∞∑
n=−∞

εnz
n+1

)
=
(

1 +
∑
n

εnd̂n

)
f (z) (7.13)

with operatord̂n given by

d̂n = −zn+1 d

dz
= i exp{inθ} d

dθ
. (7.14)

The operatorŝdn form a closed Lie algebra VectS1 described in terms of the following
commutator:

[d̂m, d̂n] = (m − n)d̂m−n. (7.15)
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The central extension of this algebra (to be discussed later in this section) produces the Vira-
soro algebra. VectS1 contains a closed subalgebra formed byd̂0, d̂1 andd̂−1 corresponding
to the infinitesimal conformal transformations of the extended complex planeS2 = C∪{∞}
caused by the action of PSL(2, C). Thus, even though we had started with diffeomorphisms
of the circle, we ended up with the automorphisms of the extended complex plane. The
question arises: is such an extension unique? The answer is: “no”! Because of this negative
answer, there is a real possibility of extension of the operator formalism of two-dimensional
CFT to higher dimensions. This issue is going to be discussed in Section 8. For the time
being, we would like to explain the reasons why the answer is “no”.

Following Ahlfors [96], and more recently, Gardiner and Sullivan [97], we would like
to consider a quasisymmetric mapping (to be defined below) of the disk D to itself which
induces a topological mapping of the circumference, i.e. S1∞. To this purpose it is convenient
to use aconformaltransformation which converts the disk model to the upper half-plane
Poincaré model of the hyperbolic spaceH 2. Next, it is convenient to select pointsx, x − t ,
andx + t on the real lineR (corresponding toS1∞) so that the mappingh(x) satisfies the
M-condition

M−1 ≤ h(x + t) − h(t)

h(x) − h(x − t)
≤ M. (7.16)

Let h be a homeomorphism mapping of an open intervalI of the real axis into the real axis.
Then,h is quasisymmetricon I if there exists a constantM such that the inequality (7.16)
is satisfied for allx − t, x, x + t in I . Thus the defined quasisymmetric mapping forms a
group (which we shall denote as QS) which obeysthe samecomposition law as given by
Eq. (7.10) (except nowz is on the real line). The real lineR is the universal covering of the
circle. The exponential mapping, exp(2π iθ), induces an isomorphism betweenR/Z andS1.
The homeomorphismh(x) of S1 which is characterized by the properties [97]

h(0) = 0, h(x) + 1 = h(x + 1)

can be lifted to a homeomorphism̃h(x) of R which obeys the following inequalities:

1 − ε(t) ≤ h̃(x + t) − h̃(x)

h̃(x) − h̃(x − t)
≤ 1 + ε(t), (7.17)

whereε converges to zero witht .
It is easy to check that this result is consistent with Eq. (7.12) and, therefore, the group

G = Diff S1 is called the group of symmetric homeomorphisms.G is a proper subgroup
of QS [97]. Looking at Eq. (7.5) and identifyingr with ε(t) we conclude that the subgroup
G has boundary dilatation asymptotically equal to 1. That is such transformationdo not
cause the deformations of hyperbolic 3-manifolds. The above deficiency of the groupG

was recognized and corrected in the fundamental work by Nag and Verjovsky [49]. Below,
we would like to provide the summary of their accomplishments in the light of results just
described and with purpose of extension of these results in Section 8. In order to do so, we
still need to make several observations related to QS group. Let us begin with the following
theorem.
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Theorem 7.13(Ahlfors–Beurling [98]). Assume h is homeomorphism ofR. Then, h is
quasisymmetric if and only if there exists a quasiconformal extensionh̃ of h to the complex
plane. If h is normalized to fix three points, say0, 1and∞, then h is quasisymmetric with
constant M. The quasiconformal extensionh̃ can be selected so that its dilatation K is less
than or equal toc1(M), wherec1(M) → 1 asM → 1.

Remark 7.14. The symmetric homeomorphismα(z) by contrast fixes only one point: z = 0.
Some explicit examples of construction ofh̃ are given in the papers by Carleson[99] and
Agard and Kelingos[100].

Remark 7.15. Becausec1(M) → 1 whenM→ 1 any symmetric homeomorphism ofS1

can be approximated by a quasisymmetric one. This is the most important fact facilitating
development of CFTs beyond two dimensions.

Remark 7.16. Construction of h is closely related to study of maps of the circle as it is
known in the theory of dynamical systems[101] (see also “Note added in proof” at the end
of the paper). Evidently, one is interested in maps which map points∈ 3 to points in3

and (or), alternatively, in maps which map points in� to points in�. Notice that under
such conditions, the Lie algebraVectS1 can always be constructed since its construction
requires only existence of some open interval around any pointz ∈ �. But, by definition,
the set� is open.

Let us discuss now the issue of central extension of VectS1. The need to introduce the
central extension of the Lie algebra VectS1 is by no means intrinsic just for this group. Al-
ready Schur developed general method of constructing projective representations of finite
groups about a 100 years ago. The extension of his method to the Lie groups is relatively
straightforward and is wonderfully presented in the book by Hamermesh [102]. The com-
prehensive up to date summary of results in this direction could be found in the encyclopedic
work [103]. It is not our purpose to provide here a review of these results. We would like
only to explain the physical motivations leading to the projective representations of the
Lie groups since the central extension is directly related to construction of these projective
representations.

As is well known, there are actually two different ways to solve quantum mechanical
problems. The first one comes from mathematics of solving of second-order ordinary differ-
ential equations, while the second one comes from the algebraic (group-theoretic) approach
to the same problem. The projective representations are naturally associated with the second
approach. In particular, letg1 andg2 be two elements of some Lie groupG. One can think
of unitary representations associated with the groupG. That is one can try to find a unitary
operatorU(g), g ∈ G, such that

U(g1)U(g2) = U(g1 ◦ g2). (7.18)

Such representation of the groupG is calledvectorrepresentation (by analogy with finite-
dimensional space where the role ofU is being played by finite matrices acting on vectors).
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In quantum mechanics, as is well known, the wave function is determined with accuracy up
to a phase factor. This means that, along with Eq. (7.18), one can think of alternative way
of writing the composition law, e.g.

U(g1)U(g2) = ω(g1, g2)U(g1 ◦ g2). (7.19)

Surely, one should require|ω(g1, g2)| = 1. This then allows us to write the factorω(g1, g2)

as

ω(g1, g2) = exp{iξ(g1, g2)}. (7.20)

The phase factorξ(g1, g2) is associated with the topology of the underlying group space.
Finally, in our case of DiffS1, the action of the operatorU(g) on the vectorf (z) is given by
Eqs. (7.11)–(7.13) so that the composition law, Eq. (7.19), along with definition, Eq. (7.20),
allows us to obtain in a rather standard way [104] the centrally extended Lie algebra, VectS1,
which is known as the Virasoro algebra and it is given by

[d̂m, d̂n] = (m − n)d̂m−n + ĉa(m, n), (7.21)

where ĉ is some number (related to the central charge) and the two-cocyclea(m, n) is
related toξ(g1, g2) and can be easily obtained explicitly by using the Jacobi identity and
the commutation relations given by Eq. (7.21). The final result can be written in the form
suggested by Kac and Raina [58]

[d̂m, d̂n] = (m − n)d̂m−n + 1
12δm,n(m

3 − n)c (7.22)

with c being the central charge. For the developments presented below in this paper it is very
important to recognize thephysical reasonfor the emergence of the two-cocyclea(m, n).
Nag and Verjovsky [49] had demonstrated that it is related to the quasisymmetric defor-
mations of the projective structures onS1 by diffeomorphisms. These structures were fully
classified in [105]. Basically, they are associated with the group of Möbius transformations
PSL(2, R)

x = ax+ b

cx+ d
(7.23)

on thereal line. Study of deformations of the projective structure on the line, which was
initiated by Beurling and Ahlfors [98] was considerably developed by Carleson [99] and
Agard and Kelingos [100] and culminated in the work of Nag and Verjovsky [49]. To make
our presentation self-contained, we would like to summarize their results now from the
point of view of ideas presented in this section. This summary is needed whenever one is
contemplating about the extension of the existing two-dimensional results related to CFT
to higher dimensions (to be discussed in some detail in Section 8).

Consider a quotientT (1) = QS/PSL(2, R), i.e. the space of “true” quasisymmetric
deformations which fix three points, e.g. say, 1, −1 and−i onS1, thenT (1) is associated with
universalTeichmüller space in a sense of Bers [106]. The spaceM = Diff S1/PSL(2, R)

is embeddable inside ofT (1). The spaceM can be equipped with the complex structure
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so that it becomes infinite-dimensional Kähler manifold. For the vectorsv = ∑
mvmd̂m

andw = ∑
mwmd̂m tangentto M at some point chosen as the origin one can construct the

Kähler metricg(v, w). The most spectacular result of Nag and Verjovsky [49] lies in the
proof of the fact that the Kähler 2-form

ω(v, w) = g(v, J̃w), (7.24)

whereω(v, w) = ∑
n,mvnwma(m, n), with a(m, n) being the same as in Eqs. (7.21) and

(7.22), andJ̃w being defined through equation

J̃w =
∑
m

(−i)sign(m)wmd̂m, (7.25)

coincides with the Weil–Patersson metric

g(v, w) = W–P(v, w), (7.26)

where W–P(v, w) is the Weil–Patersson (W–P) metric onT (1). The W–P metric on Te-
ichmüller space is discussed in sufficient detail in [46]. Ifµ(z)(dz̄/dz) is the Beltrami
differential, e.g. see Eq. (7.4), andϕ([ν])(z) dz2 is the quadratic differential (e.g. see [38]
for an elementary discussion of quadratic differentials), then the W–P inner product is
defined by the following formula:

〈µ, ϕ[ν]〉 = W–P(µ, ν) =
∫∫

1/F

×
∫∫

1

µ(z)ν̄(ζ )

(1 − zζ̄ )4
dξ dη dx dy (7.27)

with ν → ϕ([ν])(z) being given by

ϕ([ν])(z) =
∫∫

1

ν̄(ζ )

(1 − zζ̄ )4
dξ dη, (7.28)

wherez = x + iy, ζ = ξ + iη and1 is the unit disk withF being some Fuchsian group
thus making the quotient1/F a Riemann surface. In the present case,F ≡ 1, as it will be
explained shortly. In view of this, one should not worry aboutF .

Remark 7.17. (a) The kälerity of W–P metric expressed by Eq.(7.24)had actually been
proven by Ahlfors[50] in 1961. (b)In the same paper by Ahlfors, Eq.(7.28) has been
derived, which differs in sign and numerical prefactor from Eq.(7.28).This, fortunately,
plays no role in the final results obtained in[49].

Remark 7.18. Since Eq.(7.28)plays the central role in the rest of calculations presented
below, we would like to provide some additional information related to this equation(not
contained in[49]) in order to help physically educated reader to appreciate its significance.
To this purpose letµf in Eq. (7.4) be written asµ(t)(z) = tν(z). Then, it can be shown
[45] that for solutionf µ of Beltrami equation(7.4),the following limiting result holds:

v̇[µ](z) = lim
t→0

f µ − z

t
= − 1

π

∫∫
H2

ν(z)
z(z − 1)

ζ(ζ − 1)(ζ − z)
dξ dη. (7.29)
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With help of Eq. (7.29), we obtain

f µ(z) = z + v̇[µ](z)t + o(t), t → 0, (7.30)

to be compared with Eq. (7.12). From this comparison, it follows that the quasisymmetric
vector fieldv onS1 can be defined as

v = v̇[µ](z)
d

dz
. (7.31)

In addition, using Eq. (7.30), we obtain

d

dz
f µ(z) = 1 + t

d

dz
v̇[µ](z) ≡ 1 + t v̇[µ]′, (7.32)

and also

d2

dz2
f µ(z) = t v̇[µ]′′, (7.33)

d3

dz3
f µ(z) = t v̇[µ]′′′. (7.34)

The Schwarzian derivative of{f µ, z} defined by

ϕt [ν}(z) = {f µ, z} = f ′′′′(z)
f ′′(z)

− 3

2

(
f ′′(z)
f ′(z)

)2

(7.35)

can now be constructed so that in the limitt → 0 using Eqs. (7.32)–(7.35) we obtain

ϕt [ν](z) = t v̇[µ]′′′ + o(t). (7.36)

Let nowµ(t) = µ + tν[z], then we can construct

ϕ[z](z) = ϕt [ν](z) − ϕ0[ν](z)

t
= −12

π

∫∫
H2

ν̄(z)

(ζ̄ − z)4
dξ dη, (7.37)

where the use was made of Eq. (7.29) in order to performz-differentiation in Eq. (7.36)
explicitly. Obtained result is documented in the book of Ahlfors [96, p. 138] and should
be compared against Eq. (7.28) upon conversion fromH 2 plane to the disk1. Since it is
well known [45] that the Schwarzian derivative acts like a quadratic differential under the
transformations which belong to the Fuchsian groupF , we conclude that, indeed, up to an
unimportant constant (which may differ from−12/π when the transformation fromH 2 to
1 is made), Eqs. (7.28) and (7.37) are equivalent.

Next, by combining Eqs. (7.21)–(7.25), it can be shown that

g(v, w) = −2iĉ Re
∞∑

m=2

v̄mwm(m3 − m). (7.38)

In addition, it is possible to show that the Fourier coefficients ofv̇[µ] (and, analogously,
ẇ[µ]) defined by Eq. (7.31) are given by

vk = i

π

∫∫
1

µ̄(z)zk−2 dx dy, (7.39a)
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wk = i

π

∫∫
1

ν(z)zk−2 dx dy, k ≥ 2. (7.39b)

Using these results in Eq. (7.38), we obtain

∞∑
m=2

v̄mwm(m3 − m) = − 1

π2

∫∫
1

×
∫∫

1

µ(z)ν̄(ζ )

( ∞∑
m=2

zm−2ζ̄ m−2(m2 − m)

)
dξ dη dx dy.

(7.40)

Using summation formula

∞∑
m=2

(m3 − m)xm−2 = −1

6(1 − x)4
, |x| < 1, (7.41)

in Eq (7.40), we obtain

g(v, w) = − iĉ

3π2
W–P(µ, ν) (7.42)

with W–P(µ, ν) being defined by Eq. (7.27), where now we have to putF = 1. Surely,ĉ
can be replaced by ib and we can adjustb in such a way that12(b/π2) = 1

12c in accord with
Eq. (7.22).

Thus, we have demonstrated, following Nag and Verjovsky [49] thatthe central charge
of the Virasoro algebra is directly associated with the quasisymmetric deformations of1

(or H 2). In view of this fact, it becomes possible to consider extensions of the existing
formalism to higher dimensions. This is the subject of Section 8.

Remark 7.19. Since the Virasoro algebra, Eq.(7.22),with fixed central charge provides
solution of a particular CFT at criticality, to crossover from one universality class (given
by some fixed value of the central charge) to another (given by different value of the central
charge) Zamolodchikov, [107,108]had developed theory (known in physics literature as
c-theorem) which describes the dynamics of crossover between different values of central
charge. It would be very interesting to explain his results by developing ideas of Nag and
Verjovsky[49].

8. Beyond two dimensions

In 1968, Mostow [109] proved a very important theorem which is known as Mostow
rigidity theorem. It can be formulated as follows.

Theorem 8.1 (Mostow [109]). Let N = Hd+1/0 be a complete hyperbolic manifold,
d ≥ 2, and let N ′ = Hd+1/0′ be some other hyperbolic manifold, then if there is a
quasi-isometric homeomorphismf : N → N ′, then f is homotopic to an isometryN → N ′
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only if both Möbius groups0 and0′ are of the first kind(i.e. � = Sd∞ − 3 = 0, e.g.see
Section5).

Remark 8.2. This result could be easily understood in view of Eqs.(7.7) and (7.8).For an
additional illustration of the existing possibilities one is encouraged to look at the paper by
Donaldson and Sullivan[110] who established that some closed 4-manifolds have infinitely
many distinct quasiconformal structures, while others do not admit the quasiconformal
structure at all.

Remark 8.3. Mostow rigidity theorem can be viewed as an extension and ramification of
much earlier theorem by Liouville[111] (originally proven in1850)which can be stated as
follows.

Theorem 8.4(Liouville). Let U be some open subset ofRd ∪ {∞} ≡ R̂d and letf : U →
R̂d be a conformal map, then f is just a Möbius transformation ford ≥ 3.

It is because of this theorem, known in physics literature [9], there is a widespread belief
that results of two-dimensional CFTcannotbe extended to higher dimensions.

Remark 8.5. In order to studyd-dimensional systems at criticality(d ≥ 2)one should look
for the Möbius groups of the second kind. Then, the question arises immediately: is there an
analog of physically fundamentally important Canary–Taylor theorems(Theorems7.3 and
7.5) in higher dimensions? We are unaware of a comprehensive answer to this question.
However, we would like to mention the “tour de force” papers by Gromov et al.[112] and
also by Kuiper[113] from which it follows that, at least for groups of isometries ofH 4

considered in these references, the limit set is a circleS1 (actually, nowhere differentiable
Julia-like set).

In view of the above lack of Canary–Taylor theorems in higher dimensions, we would
like to discuss now different methods of study of the limit sets (and their complements)
of the Möbius groups in dimensions higher than 3. To this purpose, using Eqs. (5.2)–
(5.5) and following McMullen [27] (and Thurston [43, Chapter 11], we define the
map:

av : C∞(Sd
∞, R) → C∞(Hd+1, R)

or

F(0) ≡ av(f )(0) = 1

ωd

∫
Sd

dω(x)f (x), (8.1)

i.e. the map av(f ) is the average off over Sd∞. Using Eqs. (5.2) and (5.5), we ob-
tain
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F(y) =F(γ 0) = 1

ωd

∫
Sd

dω(x)f (γ x)

= 1

ωd

∫
Sd

dω(x)f (T −1
y x)

= 1

ωd

∫
Sd

dω(x)|T ′
y(x)|df (x)

= 1

ωd

∫
Sd

dω(x)

(
1 − |y|2
|x − y|2

)d

f (x) = av(γf )(0)

(8.2)

herey ∈ Hd+1, T −10 = y. Using Eqs. (2.14), (3.7), (3.8), (3.15) and (5.2) we conclude
that

1hav(γf )(0) = 0. (8.3)

That is the average av(f ) is a hyperharmonic function in hyperbolic metric. It is clear that
to restore the harmonic functionF(x) in Hd+1 it is sufficient to know the functionf (x) at
the boundary of hyperbolic space, i.e. onSd∞ (recall the holography principle discussed in
Section 1).

Let nowv(x) be some vector field,v(x) ∈ Sd∞. Then, as before, one can extend it to the
bulk of hyperbolic space by using the prescription

av(v)(0) = 1

ωd

∫
Sd

dω(x) v(x). (8.4)

In the case of functions, av(f ) by designprovides a continuous function onSd∞ ∪ Hd+1.
This is not true for vectors (or tensors in general). In the case of vectors, one defines the
extensionoperator ex(f ) via the following prescription:

ex(f ) = av(f ) for scalar fields(functions), (8.5)

ex(v) = d + 1

2d
av(v) for vector fields, etc. (8.6)

Being armed with these results we are ready to extend the results of Section 7 to higher
dimensions. To this purpose, we need to reanalyze Eq. (7.29) first. It is the equation for
the vectorfield which is created by the deformationν(ζ ). It can be shown, e.g. see [45,
pp. 196–197] that

∂

∂z̄
v̇[µ](z) = ν(z), (8.7)

i.e. whenν(z) = 0, v̇[µ](z) is just a holomorphic function which obeys the Cauchy–Riemann
equations. Ahlfors [25] had demonstrated that there is an analog of Eq. (8.7) in higher di-
mensions. Letfi(x) = v̇i [µ](x), x ∈ Sd∞ ∪ Hd+1, then the higher-dimensional analog of
Eq. (8.7) is given by

(Sf )ij = 1

2

(
∂fi

∂xj

+ ∂fj

∂xi

)
− δij

d + 1

d+1∑
k=1

∂fk

∂xk

= 4ij (x). (8.8)
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It can be shown that Eq. (8.8) is reduced to Eq. (8.7) in two dimensions. In a special case
4ij (x) = 0, one obtains solution of Eq. (8.8) in the form

f 0
i = ai +

∑
j

Aijxj + bix2 − 2(b · x)xi, (8.9)

wherea andb are some constant vectors andA is a constant matrix which is the sum of
skew-symmetric and diagonal (with the same elements along the diagonal) matrices. Apart
from the matrix term in Eq. (8.9), the above result is identical with that known in physics
literature, (e.g. see [9, Eq. (4.14)]). By analogy with Eq. (7.31) in two dimensions (taking
into account the behavior at infinity [27]) one obtains for the vector field

v(z) = (a + bz+ cz2)
∂

∂z
, (8.10)

which clearly obeys VectS1 Lie algebra, Eq. (7.15), as expected. The central extension of
this algebra given by Eqs. (7.21) and (7.22) isnot affected by this field since for indices
1, 0, −1, one hasa(m, n) = 0. This is also in complete accord with Eq. (7.38). This
observation has very important consequences. In particular, if one would like to obtain
solution to Eq. (8.8) for4 6= 0, then, obviously, the general solutionfi is going to be given
by

fi = f 0
i + ϕi. (8.11)

Hence, physically interesting nontrivial solutions of Eq. (8.8) are given byϕi = fi − f 0
i .

This observation can be broadly generalized from the point of view of cohomology theory
to be discussed briefly below. In the meantime, one is faced with the problem of finding
solutions to Eq. (8.8) for4 6= 0. Ahlfors [25] had found a very ingenious way of doing
this. To this purpose, he had introduced the operatorS∗ adjoint toS. Without going into
details of its explicit form which could be found in his work, the main point of having such
an operator lies in selecting such4’s for which

S∗4 = 0. (8.12)

Then, by analogy with the results of Sections 2 and 3, one obtains the following Dirichlet-type
problem of finding the solutions of the Laplace-like equation inBd+1:

ρ−d−3S∗ρd+1Sv = 0, ρ = 1

1 − x2
, (8.13)

supplemented with the boundary condition

v|Sd∞ = f , x2 = 1 at Sd
∞. (8.14)

To solve this equation, one has to assign the vector fields at the boundary. A complete
solution which takes into account Eqs. (8.5) and (8.6) was obtained by Reimann [114]. An
alternative derivation which uses the theory of pseudo-Anosov homeomorphisms (which
we had discussed in connection with dynamics of 2+1 gravity and textures in liquid crystals
in [37,38]) was recently obtained by Kapovich [115]. He proved the following theorem.
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Theorem 8.6(Kapovich [115]). Suppose thatv is a smooth automorphic k-quasiconformal
vector field on the open unit ballBd+1 in Rd+1, d ≥ 2. Thenv admits a continuous
tangential extensionvvv∞ to Sd∞. The vector fieldv∞ is again a k-quasiconformal vector
field on the sphereSd∞.

Remark 8.7. Recent attempts[1,116] to extend CFTs to higher dimensions for technical
reasons are limited to even dimensionalities, e.g. 2, 4 and 6.The results of Reimann and
Kapovich can be used for anyd ≥ 2. This fact is consistent with latest results of Bakalov
et al. [59].

To have some appreciation of these more general results, our experience with two-
dimensional case discussed in Section 7 is helpful. It is also useful for development of co-
homological methods [117] of study of deformations of Kleinian (and, in general, Möbius)
groups. We shall follow mainly the ideas of Imayoshi and Taniguchi [45] and Kra [118]
since, in our opinion, they are the most helpful for understanding of more sophisticated
treatments [117,119] not limited to dimension 2.

The starting point is Eq.(8.7). Iḟv[µ](z) ≡ F(z) is a vector field, then, naturally, we have
to require

F(γ ◦ z) = γ ′F(z), (8.15)

whereγ ′ was defined after Eq. (5.4). Following [46], let us callF(z) a “potential” forν. It is
clear that Eq. (8.7) must be consistent with Eq. (8.15). This imposes some restrictions on the
potentialF , i.e. we have to demand that the combinationF(γ ◦z)−γ ′F(z) vanishes for any
γ ∈ 0. Define now the functionχF (γ ) = (F (γ ◦z)/γ ′)−F . Taking into account Eqs. (7.29),
(7.31), (8.7), (8.9) and (8.10), we conclude that vectorχF (γ ) should be proportional to that
given in Eq. (8.10). At the same time, it should satisfy the one-cocycle condition

χF (γ1 ◦ γ2) = (γ2)∗(χF (γ1)) + χF (γ2), γ1, γ2 ∈ 0 (8.16)

with

γ∗(P ) = P ◦ γ

γ ′ . (8.17)

Indeed, since we have

χF (γ1) = F ◦ γ1

γ ′
1

− F, χF (γ2) = F ◦ γ2

γ ′
2

− F,

we expect that

χF (γ1 ◦ γ2) = F ◦ (γ1 ◦ γ2)

(γ1 ◦ γ2)′
− F.

Use of these results in Eq. (8.16) produces the result which is well known in the theory of
dynamical systems [97]:

(γ1 ◦ γ2)
′ = γ ′

1γ
′
2. (8.18)
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Let W be another potential forν, thenP = W − F is again proportional to the vector field
given by Eq. (8.10). Thus,χW − χF = δ(P ), whereδ(P )(γ ) = γ∗(P ) − P . Recall now
that, according to Eq. (7.29), we had definedµ(t)(z) = tν(z). Therefore, Eq. (7.9) can be
rewritten asγ t = f t ◦ γ̂ ◦ (f t )−1 so that(d/dt)γ t |t=0 = γ̇ . By combining this result with
Eq. (7.29), we obtain

df t

dt
|t=0 = F(z) ≡ ḟ [µ], (8.19)

and also, obviously,

f t ◦ γ̂ = γ t ◦ f t . (8.20)

Differentiating Eq. (8.20) and, again, taking into account Eq. (7.29) we obtain

ḟ [µ] ◦ γ = γ̇ + ḟ [µ] · γ ′. (8.21)

This leads us to

χḟ [µ] = ḟ [µ] ◦ γ

γ ′ − ḟ [µ] = γ̇

γ ′ . (8.22)

In view of Eq. (8.15) we observe that the obtained result is nontrivial. Accordingly, ifχḟ [µ]

is the vector spaceZ1 of cocycles andδ(P ) is the vector spaceB1 of coboundaries, then
the quotient

H 1 = Z1

B1
(8.23)

defines the first Eichler cohomology group of0, i.e. the group ofnontrivial deformations.
With some efforts [118] it is possible to construct the second and higher Eichler cohomology
groups. Although the above analysis seems quite natural, the higher-dimensional general-
izations of such cohomological arguments so far had been based on the cohomology theory
developed by Eilenberg and McLane [120], e.g. see [117], which is conceptually similar but
technically a bit different from the Eichler theory [118]. The reasons for such limitations
of Eichler’s approach are clear: all arguments use two-dimensional complex analysis. In
our opinion, Eilenberg–McLane approach is more formal and, hence, allows much lesser
use of physical intuition. The famous Gelfand–Fuks two-cocycle obtained with help of
Eilenberg–McLane cohomology theory (also in a rather formal way) for the Lie algebra
of the vector fields is known to produce the central extension of the VectS1 Lie algebra
[60], e.g. see Eq. (7.15). Recently, Bakalov et al. [59] had succeeded in consistently extend-
ing the cohomological results of Gelfand and Fuks to higher dimensions (although some
work is still in progress). It remains a challenging problem to connect these results with the
cohomological results of Johnson and Millson [117] and Kourouniotis [121], which take
explicitly into account deformations of hyperbolic groups. In anticipation of more rigor-
ous mathematical results, we would like to present now some more intuitive physical-type
arguments which enable us to provide some tentative answers to these problems.
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First, we have to think about the higher-dimensional analog of the Lie algebra for the group
PSL(2, C). In two dimensions it forms a closed subalgebra within the Virasoro algebra. For
concreteness, let us think about description of three-dimensional conformal models, i.e.
d + 1 = 4. As it was shown by Cartan [51], the Lie algebra of conformal transformations
of Rd+1 is isomorphic to the Lie algebra of the groupO(d + 1, 1). For our purposes we
need actually only the component connected to identitySO0(d + 1, 1) of O(d + 1, 1).
As it was shown recently by Scannell [62], this group issimultaneously isomorphicto the
group Isom+(Hd+1), which is the group of orientation-preserving isometries ofHd+1, the
group Möb+(Sd) of orientation-preserving Möbius transformations ofSd∞ and the group
Isom+(Sd+1

1 ) of isometries of the de Sitter space (Sd+1
1 = {v ∈ Rd+2

1 |〈v, v〉 = 1} with
Rd+2

1 being the spaceRd+2 equipped with the signature(d + 1, 1)). We shall use the last
option for reasons which will become obvious momentarily. Incidentally, ford = 2, we have
to deal with the groupSO(3, 1) which is just the Lorentz group isomorphic to PSL(2, C) as
discussed in great detail in [52]. It is very striking that the representations of the Lie group
SO(4, 1) and, in particular, its connected component describe the spectrum of the hydrogen
atom [57]. This fact is helpful for treatment of three-dimensional conformal models. From
the detailed analysis of the de Sitter group performed in [53–55], it follows that the Lie
algebra of the groupSO(4, 1) is isomorphic to the direct product of two Lie algebras of the
groupSO(3), i.e.so(4, 1) = so(3) ⊗ so(3). But it is well known that the Lie groupSO(3)

can be mapped onto PSL(2, C) (it is intuitively clear since via stereographic projection
the sphereS2, on whichSO(3) acts, is being mapped onto the extended complex plane
(on which PSL(2, C) acts) and, indeed, for the corresponding Lie groups the commutation
relations given by Eq. (4.3) of [53,54], up to a trivial rescaling, coincide exactly with those
given by Eq. (7.15). Since VectS1 Lie algebra, Eq. (7.15), admits central extension, we,
thus, arrive at the direct product of two Virasoro algebras which may havedifferentcentral
charges in general. The task now is to find the highest weight representations for such tensor
product of two Virasoro algebras. This task makes sense to discuss only if the limit set3

is the union of two independent circles. In the light of the results of Gromov et al. [112] for
some 4-manifolds, the limit set is, still, just a circleS1. Balinskii and Novikov [122] had
proposed the multicomponent extension of the Virasoro algebra (e.g. see of [122, Eq. (14)).
Their work considers the embedding ofS1 into n-dimensional smooth manifoldM, i.e.
f : S1 → M, f (x) = {ui(x), 1 ≤ i ≤ n; x ∈ S1}. Accordingly, there isonly onecentral
charge. The cohomological analysis of this embedding is discussed in a recent survey by
Mokhov [48]. Apparently, the results of Bakalov et al. [59] are different from that discussed
by Mokhov. Full analysis of the emerging possibilities is left for future work.
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